A GEOMETRIC INTERPRETATION OF THE KÜNNETH FORMULA FOR ALGEBRAIC K-THEORY

BY F. T. FARRELL AND W. C. HSIANG1

Communicated by G. D. Mostow, October 13, 1967

1. Introduction. A Künneth Formula for Whitehead Torsion and the algebraic K_1 functor was derived in [1], [2]. The formula reads as follows. Let A be a ring with unit and A[T] be the finite Laurent series ring over A. Then, there is an isomorphism $K_1A[T] \cong K_1A$ $\bigoplus K_0A \oplus L_1(A, T)$ where $L_1(A, T)$ are generated by the images in $K_1A[T]$ of all $I+(t^{\pm 1}-1)\beta$, with β a nilpotent matrix over A. On the other hand, a group $C(A, \alpha)$ was introduced by one of the authors in his thesis [3], [4] in order to study the obstruction to fibring a manifold over S^1 . The group $C(A, \alpha)$ is the Grothendieck group of finitely generated projective modules over A with α semilinear nilpotent endomorphisms where α is a fixed automorphism of A. The structure of $C(A, \alpha)$ suggests its close relation with the above Künneth Formula. This relation gradually became clear to us after we wrote the joint paper [5]. Since fibring a manifold over S^1 is a codimension one embedding problem, one expects a good geometric interpretation of the above formula in terms of the obstruction to finding a codimension one submanifold.

In this note, we announce this interpretation which will make the relationship of [1], [2] and [3], [4], [5] even clearer. In order to put our geometric theorems in a more natural setting, we generalize the Künneth Formula to $K_1A_{\alpha}[T]$ where α is an automorphism of A and $A_{\alpha}[T]$ is the α -twisted finite Laurent series ring over A. This generalization is given in §2.

This note is an attempt to understand more about nonsimply connected manifolds and the functors K_0 , K_1 . A systematic account will appear later. We are indebted to W. Browder for calling our attention to the codimension one embedding problem.

2. The Künneth Formula for $K_1A_{\alpha}[T]$. Let A be a ring with unit. The α -twisted polynomial ring $A_{\alpha}[t]$ is defined as follows. Additively, $A_{\alpha}[t] = A[t]$. Multiplicatively, for $f = at^n$, $g = bt^m$ two monomials, $f \cdot g = a\alpha^n(b)t^{n+m}$. Similarly, we define $A_{\alpha}[T] = A_{\alpha}[t, t^{-1}]$. The inclusion $i : A_{\alpha}[t] \subset A_{\alpha}[T]$ induces the exact sequence [2], [6]

¹ Both authors were partially supported by NSF Grant NSF-GP-6520. The second named author also held an Alfred P. Sloan Fellowship.

(1)
$$K_1A_{\alpha}[t] \xrightarrow{i_*} K_1A_{\alpha}[T] \xrightarrow{q} K_1\Phi(i) \xrightarrow{\partial} K_0A_{\alpha}[t] \xrightarrow{i_*} K_0A_{\alpha}[T].$$

The group $K_1\Phi(i)$, and the homomorphisms q, ∂ are described as follows. An element in $K_1\Phi(i)$ is represented by a class [P, a, Q] where P, Q are finitely generated projective modules over $A_a[t]$ and

$$a: A_{\alpha}[T] \otimes_{A_{\alpha}[t]} P \rightarrow A_{\alpha}[T] \otimes_{A_{\alpha}[t]} Q$$

is an isomorphism. Let $[(A_{\alpha}[T])^n$, a] represent an element in $K_1A_{\alpha}[T]$. Then $q[(A_{\alpha}[T])^n$, $a] = [(A_{\alpha}[t])^n$, a, $(A_{\alpha}[t])^n]$. This definition makes sense, since $(A_{\alpha}[T])^n = A_{\alpha}[T] \otimes_{A_{\alpha}[t]} (A_{\alpha}[t])^n$. For [P, a, Q] in $K_1\Phi(i)$, $\partial[P, a, Q] = [P] - [Q]$. Now, let us recall the group $C(A, \alpha)$ introduced in [3], [4]. $C(A, \alpha)$ is the abelian group generated by all the isomorphism classes [P, f] where P is a finitely generated projective module over A with an α semilinear nilpotent endomorphism f, modulo all the relations $[P_2, f_2] = [P_1, f_1] + [P_3, f_3]$ for all the short exact sequences $0 \rightarrow (P_1, f_1) \rightarrow (P_2, f_2) \rightarrow (P_3, f_3) \rightarrow 0$. The "Forgetting Functor" by throwing away the endomorphism defines a homomorphism

(2)
$$j: C(A, \alpha) \to K_0(A) \xrightarrow{\alpha_* - \mathrm{id}} K_0 A \xrightarrow{h} K_0 A_{\alpha}[t],$$

where h is induced by inclusion. Let $\tilde{C}(A, \alpha)$ be the subgroup of $C(A, \alpha)$ generated by $[A^n, a] - [A^n, 0]$. It was proved in [3], [4] that we have the natural decomposition $C(A, \alpha) = \tilde{C}(A, \alpha) \oplus K_0A$. Let us define $\overline{C}(A, \alpha) = \tilde{C}(A, \alpha) \oplus \tilde{K}_0A$, and let $C(A, \alpha)^{\alpha}$, $\overline{C}(A, \alpha)^{\alpha}$ be the subgroups of $C(A, \alpha)$ and $\overline{C}(A, \alpha)$, respectively, consisting of elements invariant under α . Now, let us consider the following construction. Let $[P, \alpha, O]$ be an element in $K_1\Phi(i)$. Since

$$P = A_{\alpha}[t] \otimes_{A_{\alpha}[t]} P \subset A_{\alpha}[T] \otimes_{A_{\alpha}[t]} P$$

and

$$Q = A_{\alpha}[t] \otimes_{A_{\alpha}[t]} Q \subset A_{\alpha}[T] \otimes_{A_{\alpha}[t]} Q,$$

we can find t^n $(n \ge 0)$ such that $L_{t^n} \circ a(P) \subset Q$ where L_{t^n} is the left multiplication by t^n .

THEOREM 1. (a) $M(L_i \circ a) = Q/L_i \circ a(P)$ is a finitely generated projective module over A and L_i defines an α semilinear nilpotent endomorphism t on $M(L_i \circ a)$.

² $L_{in} \circ a$ is α^n semilinear.

(b) If we define $\chi: K_1\Phi(i) \to C(A, \alpha)$ by setting

$$\chi[P, a, Q] = [M(L_{i^n} \circ a), t] - [P/L_{i^n}(P), t],$$

then χ is an isomorphism. Moreover, the following triangle is commutative.

(3)
$$K_{1}\Phi(i) \xrightarrow{\partial} K_{0}A_{\alpha}[t]$$
$$\chi \qquad \gamma_{j}$$
$$C(A, \alpha)$$

Therefore, the sequence (1) becomes

(4)
$$K_1 A_{\alpha}[t] \xrightarrow{i_*} K_1 A_{\alpha}[T] \xrightarrow{p} C(A, \alpha) \xrightarrow{j} K_0 A_{\alpha}[t] \xrightarrow{i_*} K_0 A_{\alpha}[T]$$

where $p = \chi \circ q$. The typical example of $A_{\alpha}[T]$ comes as follows. Let $G \odot_{\alpha} Z$ be a split extension $1 \rightarrow G \rightarrow G \odot_{\alpha} Z \rightarrow Z \rightarrow 1$, such that a generator t of Z acts on G as an automorphism α of G. Then $Z(G \odot_{\alpha} Z) = Z(G)_{\alpha}[T]$. Let $G \odot_{\alpha} Z^+$ be the induced split extension of G by the semigroup of nonnegative integers Z^+ , and let us write

Wh
$$G \odot_{\alpha} Z^+ = K_1 \mathbf{Z} (G \odot_{\alpha} Z^+)/J$$

where J is the subgroup generated by $\{\pm 1\}$ and $\{G\}$. The inclusion $i': G \subset G \odot_{\alpha} Z^+$ induces a homomorphism $i_*': \operatorname{Wh} G \longrightarrow \operatorname{Wh} G \odot_{\alpha} Z^+$. Let $p_1: K_1 \mathbb{Z}(G \odot_{\alpha} Z) = K_1 \mathbb{Z}(G)_{\alpha}[T] \longrightarrow C(A, \alpha)$ be the homomorphism defined as p except that we consider the inclusion $K_1 \mathbb{Z}(G)_{\alpha}[t^{-1}] \subset K_1 \mathbb{Z}(G)_{\alpha}[T]$ instead. The composite of homomorphisms

$$K_1\mathbf{Z}(G\odot_{\alpha}Z^+) = K_1\mathbf{Z}(G)_{\alpha}[t] \to K_1\mathbf{Z}(G\odot_{\alpha}Z) = K_1\mathbf{Z}(G)_{\alpha}[T] \xrightarrow{p} C(A,\alpha)$$

induces a homomorphism p': Wh $G \odot_{\alpha} Z^+ \rightarrow \tilde{C}(A, \alpha)$.

LEMMA 1. The following sequence is short exact:

$$0 \to \text{Wh } G \xrightarrow{i_*'} \text{Wh } G \odot_{\alpha} Z^+ \xrightarrow{p'} \dot{C}(A, \alpha) \to 0.$$

Let I and I_1 be the subgroups of $K_1A_{\alpha}[t]$ and WhG, respectively, generated by $x-\alpha_*x$ for $x\in K_1A_{\alpha}[t]$ or WhG, respectively. Using Lemma 1, I_1 can be considered as a subgroup of Wh $G\odot_{\alpha}Z^+$.

THEOREM³ 2 (KÜNNETH FORMULA FOR $K_1A_{\alpha}[T]$ or Wh $G \odot_{\alpha} Z$). The following two sequences are exact:

^{*} C. T. C. Wall has proven this theorem independently.

(5)
$$K_{1}A_{\alpha}[t]/I \xrightarrow{i_{*}} K_{1}A_{\alpha}[T] \xrightarrow{p} C(A, \alpha)^{\alpha} \to 0,$$

$$\operatorname{Wh} G \odot_{\alpha} Z^{+}/I_{1} \xrightarrow{i_{*}} \operatorname{Wh} G \odot_{\alpha} Z \xrightarrow{p} \overline{C}(Z(G), \alpha)^{\alpha} \to 0.$$

REMARKS. (a) For $\alpha = id$, the sequences of (5) are split short exact and I=0, $I_1=0$, $C(A,\alpha)^{\alpha}=C(A,\mathrm{id})$, $\overline{C}(\boldsymbol{Z}(G),\alpha)^{\alpha}=\overline{C}(\boldsymbol{Z}(G),\mathrm{id})$. These sequences together with those for the inclusions $A_{\alpha}[t^{-1}] \subset A_{\alpha}[T]$, $G \odot_{\alpha} Z^{-} \subset G \odot_{\alpha} Z$ (where Z^{-} is the semigroup of nonpositive integers) lead to the Künneth Formula of [1], [2] mentioned in the introduction.

- (b) $\tilde{C}(A,\alpha)^{\alpha}$ is always equal to $\tilde{C}(A,\alpha)$.
- (c) When $A = \mathbf{Z}(G)$ for G a finitely presented group, the sequences (5) are short exact by a geometric proof. We believe that they are always short exact.
- (d) For $\alpha = id$, the Künneth Formula is a generalization of Bott's periodicity [1], [2].
- 3. Homotopic interpretation of $p: K_1A_{\alpha}[T] \rightarrow C(A, \alpha)$. Let $C: C_n$ $\rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_1 \rightarrow C_0 \rightarrow 0$ be a based free finitely generated chain complex over $A_{\alpha}[t]$. Then the basis of C induces a basis for $\mathbf{C}' = A_{\alpha}[T] \oplus_{A_{\alpha}[t]} \mathbf{C}.$

LEMMA 2. Let C and C' be given as above. Assume that C' is acyclic and

$$H_i(C) = 0$$
 $i \neq s$ for $0 \leq s \leq n$,
Proj dim $H_s(C) \leq 1$.

Then $[H_{\mathfrak{s}}(\mathbf{C}), t]$ is in $C(A, \alpha)$ and $p(\tau(\mathbf{C}')) = (-1)^{\mathfrak{s}}[H_{\mathfrak{s}}(\mathbf{C}), t]$ where $\tau(C') \in K_1 A_{\alpha}[T]$ is the torsion of C'.

Now, let $(K; K_1, K_2)$ be a triad of finite CW-complexes with $\Pi_1 K = G \odot_{\alpha} Z$. Suppose that $\Pi_1 K_2$ is the normal subgroup G under the inclusion. Suppose that we can lift K_2 into the covering space X of K corresponding to G such that K_2 divides X into A and B with $t(A) \subset A$ where t now stands for a generator of the ∞ -cyclic group of covering transformations. Assume that K_1 is a deformation retract of K. Set Y to be the portion of X over K_1 . Assume further that (a) $H_i(A, A \cap Y; \mathbf{Z}(G)) = 0$ for $i \neq s$, and (b) Proj $\dim_{\mathbf{Z}(G)_{\mathbf{z}}[t]} H_s(A, A \cap Y;$ $Z(G) \leq 1$. Then $H_{\mathfrak{s}}(A, A \cap Y; Z(G))$ is a finitely generated projective module over Z(G), and the covering transformation t induces an α semilinear nilpotent endomorphism on $H_{\mathfrak{s}}(A, A \cap Y; \mathbf{Z}(G))$. Denote the corresponding element in $\overline{C}(\mathbf{Z}(G), \alpha)$ by $[H_s, t]$.

THEOREM 3 (HOMOTOPIC INTERPRETATION OF p). Let $(K; K_1, K_2)$ be given as above, and let $\tau(K, K_1) \in Wh\Pi_1 K_1 = WhG \odot_{\alpha} Z$ be the torsion of the pair (K, K_1) . Then

(6)
$$p\tau(K, K_1) = (-1)^s [H_s, t].$$

Now, let $f: K \to L$ be a homotopy equivalence of finite CW-complexes. Suppose that $\Pi_1 L = G \odot_{\alpha} Z$ and L_1 is a subcomplex of L with $\Pi_1 L_1 = G$ under the inclusion. Let X be the covering space of L corresponding to G. Suppose that a lifting of L_1 into X divides X into A_L and B_L such that $t(A_L) \subset A_L$ for t a generator of the group of covering transformations. Let Y be the corresponding covering space of K and $f_1: Y \to X$ be a covering map. Set $K_1 = f^{-1}(L_1)$, $A_K = f_1^{-1}(A_L)$, and $B_K = f_1^{-1}(B_L)$. Assume that (a) $f_*: H_i(A_K; \mathbf{Z}(G)) \to H_i(A_L; \mathbf{Z}(G))$ is always epimorphic, (b) f_* is monomorphic except for i = s, (c) Proj dim $\mathbf{Z}_{(G)_{\alpha}[i]}$ Ker $f_* \leq 1$. Then Ker f_* is a finitely generated projective module over $\mathbf{Z}(G)$ and the covering transformation t induces an α semilinear endomorphism on Ker f_* . Denote its class in $\overline{C}(\mathbf{Z}(G), \alpha)$ by $[\text{Ker } f_*, t]$.

COROLLARY 1. Let $f: K \to L$ be given as above and $\tau(f) \in WhG \odot_{\alpha} Z$ be the torsion of f. Then $p(\tau(f)) = (-1)^{\mathfrak{o}}[\operatorname{Ker} f_*, t]$.

4. Geometric interpretation of the Künneth Formula. Now, let M_1 be an *n*-dim closed manifold with Π_1 $M_1 = G \odot_{\alpha} Z$. Let N_1 be an (n-1)-dim closed submanifold of M_1 such that Π_1 $N_1=G$ under the inclusion. Let M_2 be another *n*-dim closed manifold and $f: M_2 \rightarrow M_1$ be a homotopy equivalence. We ask what is the obstruction O(f) to finding an (n-1)-dim submanifold N_2 in M_2 and a map $g: (M_2, N_2)$ $\rightarrow (M_1, N_1)$ such that (a) g is a homotopy equivalence, (b) $f^{-1}(N_1)$ $=N_2$, (c) the induced map $g:M_2\to M_1$ is homotopic to the original map f. O(f) is called the obstruction to the splitting of f with respect to N_1 . Now, suppose that such N_2 and g exist. Cut M_1 and M_2 along N_1 and N_2 , respectively, to form manifolds with boundaries \overline{M}_1 and \overline{M}_2 such that both boundaries of \overline{M}_1 or \overline{M}_2 are N_1 or N_2 , respectively. Let X and Y be the covering space of M_2 and M_1 corresponding to G, respectively. We can lift \overline{M}_2 and \overline{M}_1 into X and Y, respectively, and find a covering map $f_1: X \to Y$ which sends the lifted image of \overline{M}_2 into that of \overline{M}_1 . Denote such a map⁵ by $h: \overline{M}_2 \to \overline{M}_1$. h induces a map $h \mid N_2: N_2 \rightarrow N_1$. They are homotopy equivalence, and hence the tor-

⁴ We only state our results for closed manifolds for exposition simplicity. We can generalize our results to a more general setting.

Such a map is not unique (cf. Theorem 4(b)).

sions are defined. Set $\tau_1 = \tau(h) - \tau(h|N_2) \in WhG$. We ask what is $i_*\tau_1 \in WhG \odot_{\alpha} Z$.

THEOREM 4 (GEOMETRIC INTERPRETATION OF THE KÜNNETH FORMULA). Assume that (M_1, N_1) , $f: M_2 \rightarrow M_1$ are given as above and $n \ge 6$. Then we have the following conclusions: (a) The obstruction O(f) to the splitting of f with respect to N_1 is equal to $p\tau(f)$ where $\tau(f) \in \text{Wh} G \odot_{\alpha} Z = \text{Wh} \Pi_1 M_2$ is the torsion of f. (b) If $O(f) = p\tau(f)$ vanishes, then $i_*\tau_1 = \tau(f) \in \text{Wh} G/I_1 \subset \text{Wh} G \odot_{\alpha} Z$. Moreover, for every element τ_1 in the coset $\tau(f)$ of $\text{Wh} G/I_1$, we can find some $g': (M_2, N_2') \rightarrow (M_1, N_1)$ and a lifting $h': \overline{M_2'} \rightarrow \overline{M_1}$ such that $\tau_1 = \tau(h') - \tau(h' \mid N_2')$.

COROLLARY 2 (SPLITTING A SIMPLE HOMOTOPY EQUIVALENCE). Under the same assumptions of Theorem 4, if f is a simple homotopy equivalence, then O(f) vanishes, and hence f is splittable with respect to N_1 .

COROLLARY 3 (PRODUCT FORMULA FOR $\overline{C}(A, \alpha)$). Let (M_1, N_1) , $f: M_2 \rightarrow M_1$ be given as in Theorem 4 and let L be a fixed closed manifold. Hence, $L \times N_1 \subset L \times M_1$ is a codimension one embedding and $(id \times f)$: $L \times M_1 \rightarrow L \times M_2$ is a homotopy equivalence. Then the obstruction $O(id \times f)$ to splitting $(id \times f)$ with respect to $(L \times N_1)$ is equal to $\chi(L) \cdot j_*O(f)$ where $\chi(L)$ is the Euler characteristic of L and $j_*: \overline{C}(\Pi_1 N_1, \alpha) \rightarrow \overline{C}(\Pi_1(L) \times \Pi_1(N_1), id \times \alpha)$ is induced by the inclusion $N_1 \subset L \times N_1$.

COROLLARY 4 (FIBRING A SIMPLE HOMOTOPY EQUIVALENCE). Suppose that M_1^n $(n \ge 6)$ fibres over S^1 with respect to $f_1: M_1^n \to S^1$. Let $g: M_2^n \to M_1^n$ be a simple homotopy equivalence. Then M_1^n fibres over S^1 with respect to $f_2 = f_1 \circ g: M_2^n \to S^1$.

References

- 1. H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 67-79.
- 2. H. Bass and P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. 86 (1967), 17-73.
- 3. F. T. Farrell, The obstruction to fibring a manifold over a circle, Bull. Amer. Math. Soc. 73 (1967), 737-740.
- 4. ——, The obstruction to finding a manifold over a circle, Ph.D. Thesis, Yale University, New Haven, Conn., 1967.
- 5. F. T. Farrell and W. C. Hsiang, H-cobordant manifolds are not necessarily homeomorphic, Bull. Amer Math. Soc. 73 (1967), 741-744.
- 6. A. Heller, Some exact sequence in algebraic K-theory, Topology 3 (1965), 389-408.
 - 7. J. W. Milnor, Whitehead torsion, Bull. Amer Math. Soc. 72 (1966), 358-426.

YALE UNIVERSITY