
REMARKS ON THE HEAWOOD CONJECTURE 
(NONORIENTABLE CASE) 

BY J. W. T. YOUNGS 

Communicated by J. D. Swift, August 22, 1967 

1. Introduction. In 1890 Heawood [3] stated a problem which has 
become known as the Heawood map-coloring conjecture. It is con­
cerned with the chromatic number of 2-manifolds, and is one of the 
oldest problems in combinatorics. 

The conjecture for orientable manifolds is not yet completely 
solved, though considerable progress has been made in the past few 
years. On the other hand, the companion conjecture for nonorientable 
manifolds was solved completely by Ringel [4] during the years 
1953-1959. For this purpose he developed a theory of "leading" per­
mutations but is hardly pleased with the complications involved. The 
object of this note is to announce a successful attack on the problem 
using quite simple combinatorial techniques. 

2. Definitions) theorems and conjectures. All manifolds M are 
closed, nonorientable and of dimension 2. Each M has a standard 
model which is a 2-sphere with added cross caps. y($t), the genus of 
iU, is the number of cross caps. Kn is the complete n-graph, that is, 
the graph with n vertices where each pair of distinct vertices is joined 
by exactly one arc. f(i£), the nonorientable genus of Kf is the smallest 
integer k such that the graph K can be topologically imbedded in a 
manifold of genus k. The chromatic number of M is designated by 
ch(Af). Define 

S(q) - [(7 + (1 + WWV j - 1, 2, 3, • - • , 
ƒ(») = {(» - 3)(» - 4)/6}, n = 5, 6, 7, • • • . 

The Heawood theorem states that 

(1) ch(Jf) S H(y(M)) 

and the Heawood conjecture is that equality holds in (1). 
The complete graph theorem is that 

(2) ?(£») £ /(»), 

and the complete graph conjecture is that equality holds in (2). 
1 [a] is the largest integer not greater than a, and {a} 'is the smallest integer not 

less than a. 
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THEOREM (RINGEL) . The Heawood conjecture is true unless M is a 
Klein bottle, in which case 6 = ch(M) < H(y(M)) = H(2) = 7.2 

An equivalent result is the following 

THEOREM (RINGEL) . The complete graph conjecture is true for nè^5 
unless n = 7, in which case 7(^7) = 3 > 2 = 1(7). 

3. General comments. In addition to Kn we shall deal with a graph 
which is nearly complete. Take Kn and add two distinct vertices x and 
y to it. Now join x and y to all the vertices of Kn. The resulting graph, 
designated by Kl+2, fails to be complete merely because x and y are 
not joined by an arc. 

If a graph K is imbedded in M and y(K) = y(M), then it can be 
shown that each component of (M—K) is a 2-cell and hence the 
Euler formula may be applied. (See [ô].) If Nk is the number of 
è-sided cells in the imbedding, and K = Kn, then 7 (Kn) = (n — 3)(n — 4)/6 
+Œk>*(k-3)Nk. Hence y(Kn)^{(n-3)(n-é)/ô} =l(n). This 
suggests that to show 

(3) f(Kn) - I(n) 

may involve six cases depending upon the membership of n in the 
various residue classes modulo 6. This expectation is realized for 
w = 3, 4 and 5 (mod 6) and the examples presented are restricted to 
these cases. 

If n = 3 or 4 (mod 6), then (n — 3)(w —4) = 0 (mod 6). In each of 
these cases we exhibit a triangular imbedding of Kn (that is, one for 
which Nk~0 if k>3) in a manifold JÎ , and thus prove (3). 

If w s S (mod 6), then (n — 3)(n—-4)^=2 (mod 6) and a triangular 
imbedding of Kn is impossible. To get around this difficulty we exhibit 
a triangular imbedding of K2

n in a manifold N of genus ƒ(») — 1 . By 
adding one suitably positioned cross cap to N we get a manifold M 
containing K2

n such that the exceptional vertices x and y can be joined 
on M by an arc which does not intersect K2

n. Hence (3) is proved. 
Some explanation is needed for the terms "we exhibit a triangular 

imbedding" used above. If K is a connected graph with no multiple 
edges or loops, and vertices v\f • • • , vn, then a schema is an array 
S: [vi.PVi],i=l, • • •, n, where PVi is a cyclic permutation of the ver­
tices which are joined to V{. 

The schema satisfies (R at (g, A) if P^l(h) =P^"1(g) and P^A) 
= P*(g); it satisfies (R* at (g, ft) if P;l(h)=Ph(g) and Pg(h)~P*l(g). 

If 5 satisfies (R, or (ft* at (g, ft), then it satisfies it at (ft, g) so that 
2 See Franklin [l] . 
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the conditions are really on unordered pairs of distinct vertices of K. 
Designate the totality of unordered pairs of vertices, each of which 
determines an arc of K, by A. Given S, let Rs (i?|) be the subset of 
A where (ft ((ft*) is satisfied. 

Ringel has shown that if R^ « A, then S gives a precise receipt for a 
triangular imbedding of K in an orientable manifold. Moreover, S 
determines a triangular imbedding of K in a nonorientable manifold if 

(i) R8\JB$ = A. 
(ii) No modification of S, made by replacing certain permutations 

Px by PJ"1 produces a schema T for which R^ — A. 
In the first case he calls S an orientable, in the second, a nonorient­

able schema for K. 

4. Construction of nonorientable schémas. The basic concepts 
employed, such as singular arc, rotation, circuit, current graph, etc., 
have been employed in [5] and are not redefined here. ([2] and [7] 
are also suggested as general references.) 

EXAMPLE 1. E?n, n = 62+5, using the symbols x and y in addition to 
the elements of Zu+z to name the vertices. 

A solution is given for t = 2 in Figure 1. The currents are from 
ZiB\0, and, in order to make the representation possible on a plane, 
the arcs carrying currents 3 and 6 have been cut. 

FIGURE 1 

All the rotations are counterclockwise, and we get a single circuit. 
The currents on the directed arcs of the circuit provide a "provi­
sional" cyclic permutation P'Q of Zi6\0; namely, (7, 3, —5, —6, —2, 2, 
— 4, —7, 5, —1, 1, 6, 4, —3). The diagram suggests that to get the 
permutation P 0 of all the vertices of K\ joined to 0 we insert x be­
tween — 1 and 1 and y between — 2 and 2 in P'Q to obtain 

(4) 0.7, 3, - 5 , - 6 , - 2 , y, 2, - 4 , - 7 , 5, - 1 , *, 1, 6, 4, - 3 . 

For each element g in Zu the permutation P0 is obtained by an addi-
tivity principle. Without changing the order, add g to each group 
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element in (4). Define Px to be (0, —1, — 2, • • • ) and Pv to be 
( 0 , - 2 , - 4 , • • . ) • 

The result is a nonorientable schema for K\7. What guarantees this 
is that: (i) At the two vertices of degree 6 one has 1+5 = 2+4 = 6, 
5 + 7+3 = 0 and 4+3 = 7. (ii) The elements —1 and —2 generate Zi6. 

There is a very useful nomogram (Figure 2) from which all this 
information may be read at a glance. 

1 v3 5 *2 

FIGURE 2 

This is not a current graph since, for example, the two directed 
"pseudo arcs" carrying current 6 do not have "terminal" vertices. 
Observe, however, that Kirchhoff's current law holds at Vi, v^ v* and 
VA and is precisely the collection of requirements (i) above. This nomo­
gram, therefore, certainly simplifies checking the four requirements 
in (i). In addition, however, it can be used to obtain the single circuit 
of Figure 1 so that Figure 2 carries all the information for a non­
orientable imbedding of K\7. The circuit is reconstructed as follows. 

Start with the directed arc carrying the current 7 and follow the 
path indicated in the figure. This leads us to v\ and up the pseudo arc 
with current 3. Record 3 as following 7. This agrees with (4). From V2 
the path goes to Vz but in doing so it takes a clockwise rotation at v% 
where a counterclockwise rotation is called for. Notice that there is a 
dot in the angle where the rotation is negated. As a mnemonic device, 
negate the current 5 which one might expect to be recorded next, and 
instead record —5. So far the permutation is 7, 3, —5, which agrees 
with (4). Following the negating rule wherever necessary along the 
indicated path we reproduce (4) thus making diagrams of the type 
shown in Figure 1 unnecessary in the future. 

In addition, we get some precise information about requirements (R 
and (R*. The vertices v%, v2, v*, v* are said to determine a "dotted" box. 
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THEOREM. If g is found on a dotted box, then (ft holds at (0, g);if g is 
not found on a dotted box, then (R* holds at (0, g). 

Diagrams of the type found in Figures 1 and 2 are called cascades. 
In this fashion we find triangular nonorientable imbeddings of 

Klt+5 and prove (3) for n^5 (mod 6). 
The continuation is quite simple as shown in Figure 3 for / = 5. 

1 5 7 II 
#—*—9. « .9 » 9. « .9 

6 12 15 9 3 

Va » O-* « O » O* «— :0 »— 
2 4 8 10 14 

FIGURE 3 

EXAMPLE 2. i£», w = 6/+4, using the symbol 2 in addition to the 
elements of Z^+z to name the vertices. 

A solution is given for 2 = 2 in Figure 4. -Afote that the first two leafs 
are duplications of the cascade in Figure 2 while the third is obtained by 
reversing all the currents and turning the diagram upside down. There 
are three circuits labelled [0], [l], [2], and the group element re­
corded where circuit [a] "meets" circuit [b] is from thecoset [ô—a], 
(See [7].) Moreover, Kirchhoff's current law holds at all vertices ex­
cept B wherein there is a "vortex" of —3. Finally each vertex is of 
degree 3. Each circuit [a] provides a cyclic permutation {a} of ZiB\0 
and z, where z is inserted in {0}, for example, between 1 and 2 as 
suggested by the position of the letter z in the vortex —3 at B. If 
g^a (mod 3), then PQ is obtained from {a} by the additivity prin­
ciple, and Pz is (2,0, 1; 14, 12, 13; 11,9, 10; 8, 6, 7; 5, 3, 4). A general 
theorem gurantees that we obtain a nonorientable schema for Ku. 

EXAMPLE 3. Kn, w = 6£+3, using the elements of Z^t+z to name the 
vertices. 

A solution is given for t = 2. There are three leafs as in Figure 4 but 
there is a change in leaf 3 which is now obtained from leaf 2 by multi­
plying the currents there by —2. There is now no "vortex" at B and 
hence no exceptional vertex z. A general theorem guarantees that on 
proceeding as in Example 2 we obtain a nonorientable schema for K\^ 

The last two examples, with three "generating" permutations are 
said to be of index 3; the first is of index 1. 

The equality (3) is proved in this fashion for w = 3, 4 and 5 (mod 6) 
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Currents from Z 
I 

15 Circuits 

B 

6 3 7» Leaf I 

3 7* Leaf 2 

Leaf 3 

2-== 
[I] 

Leaf 3 

1 * ^ 

CO] 

III 
W 

FIGURE 4 
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by employing some fortunate combinatorial properties of the cyclic 
group Zet+3. No such extreme unification appears possible if w = 0, 1 
and 2 (mod 6). 
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