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Introduction. I t is known [13] that a Lie algebra over a modular 
field has indecomposable representations of arbitrarily high dimen­
sionalities. If, however, the Lie algebra and its representations are 
required to be restricted (see [6, Chapter 5] for definitions), this need 
no longer be the case. 

A restricted Lie algebra for which the degrees of its (restricted) 
indecomposable representations are bounded by some constant is 
said to be of bounded type; one for which this is not the case is said to 
be of unbounded type. 

1. The simple three-dimensional Lie algebra, Ax. Let Ax be the 
split simple three-dimensional Lie algebra over the field K of char­
acteristic p>3. Then Ai has a basis e, ƒ, h with [e, ƒ]=&, [e, h]~2e, 
[ƒ, h]= —2/ and with £-power mapping given by ep=fp = 0, hp = h. 
There are p inequivalent irreducible (restricted) modules for Au 
classified by their highest weight. Let M\, OgX^£— 1, be the irre­
ducible ^U-module with highest weight X, so that [M\: K] = X + 1 [5]. 

Let U be the w-algebra [ô] of Ai and U= 23?-I © U$ its decom­
position into its principal indecomposable modules (p.i.m.). Since U 
is a symmetric algebra [9] each Uj has a unique top and bottom 
composition factor, these are isomorphic, and each M\ is isomorphic 
to the top composition factor of some Uj [2]. 

If M is an -4i-module, denote by M~M\V M\v • • • , M\t the fact 
that the M\p in the given order, are the composition factors of some 
composition series for M. 

THEOREM 1. Let f/(X), O g X g ^ — 1, be a p.i.m. of U whose top com­
position factor is isomorphic to M\. Then 

(i) U(p-l)ç*Mr±and [U(p-l):K]=p. 
(ii) If X ^ £ - l , then U(X)~MX, My, My, Mx, where \+y=p-2, 

and [UQi):K] = 2p. 
1 These results are contained in a dissertation submitted to Yale University in 

1967, written under the supervision of Professor G. B. Seligman. The research was 
supported by National Science Foundation grant no. GP-1813. 
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The radical R of U is the two-sided ideal generated by the elements 
er-iQi + l) and (h+l)ft>~1 [lO]. I t is not hard to show that R2 is gen­
erated, as a two-sided ideal, by ev~l{h + \)fv~1, and P 3 = 0. 

THEOREM 2. Let M be an Ai-modulefor which MR2?*0. Then M has 
a direct summand isomorphic to UÇK) for some X^p — l. 

THEOREM 3. Let M be an indecomposable Ai-module for which 
MZ)MRDMR2 = 0. Then there exists a fixed X, O ^ X g ^ — 2, such that 
the socle of M= MR = the direct sum of copies of M\, and M/MR is 
the direct sum of copies of My, where \+y~p — 2. 

COROLLARY. If M is an indecomposable Ai-module with exactly two 
composition factors, then M~M\> My for some 0^X^/> —2 and 
\+y=p-2,sothat [M:K] = p. 

THEOREM 4. For every positive integer k, there exists an indecomposa­
ble Ai-module M with [M: K] = k, so that A\ is of unbounded type. 

2. The classical Lie algebras [8]. Let T be a finite-dimensional 
associative algebra (with 1), and let P be a subalgebra (with 1) such 
that T is a finitely generated left and right P-module. If M is a right 
P-module, form M®pT and define ( 2 , - w»®^)/ = ]T)t- mi®tit for 
W i G M a n d /, ti(~T. With this, M®pT becomes a P-module, denoted 
by MT. Suppose that for any indecomposable P-module M, the map­
ping m—*m® 1, m&M, is a P-isomorphism of M onto a P-direct sum­
mand of MT. Then if P has indecomposable representations of arbi­
trarily high dimensionalities, the same is true of T (see [2], for ex­
ample). 

This is used to prove 

THEOREM 5. Let L be a restricted Lie algebra and A a restricted sub-
algebra of L such that L=A® ]C*-i ®&J (as vector spaces), where the 
Bj are restricted subalgebras with [A, J5y]C5y. Then if A is of un­
bounded type, so is L. 

In particular, if L is a classical Lie algebra one may imbed the alge­
bra Ai in L in such a way that the conditions of Theorem 5 are satis­
fied. 

THEOREM 6. Let L be a classical Lie algebra over a field of charac­
teristic p>3. Then L is of unbounded type. 

Suppose L is a Lie algebra over the field F of characteristic p>3, 
and that for some extension field K of F, the Lie algebra LK~L®FK 
is classical. L is called an F-form of the classical Lie algebra LK. 
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I t is known that K may be assumed to be a finite Galois extension of 
F [12, Chapter 4] . I t follows from the next, more general, theorem 
that the forms of the classical Lie algebras are all of unbounded type. 

THEOREM 7. Let T be a finite-dimensional associative algebra {with 1) 
over the modular field F. Let K be a finite Galois extension of F such that 
TR — T®pK is of unbounded type. Then T is of unbounded type {over F). 

3. The Jacobson-Witt algebras and simple subalgebras. 

THEOREM 8. Let W\ be the Witt algebra [4]. For k = 1, 2, • • • , there 
exists an indecomposable {restricted) representation of Wi of dimension 
kp (P>% is the characteristic of the base field), so that W\ is of un­
bounded type. 

Methods analogous to those used in the proof of Theorem 6 (where 
the part played by A\ in that theorem is assumed here by W\) may 
be used to prove 

THEOREM 9. The Jacobson-Witt algebras Wn [4] and their simple 
subalgebras Vmtll [ l ] are all of unbounded type. 

I t seems quite likely that all known simple restricted Lie algebras, 
i.e., those of classical and Cartan type [7], are of unbounded type.2 

4. Nilpotent Lie algebras. Let L be a finite-dimensional restricted 
Lie algebra over the field K of prime characteristic p, and set La) = £ , 
7,0+1)=: [7, 70)] for j e 1. If S is a subset of i , denote by Sp the 
linear span of the elements sp, s(£S, so that Sp XQ{SP ) p . 

DEFINITION. S e t Z i = Z, and Zfc = I w + ( I ^ 1 ^ + ( i M ) p 2 + • • • 
+Lp îork>l. The series L = Li^L^^LzQ. • • • is the (restricted) 
lower central series for L, and if Lk*=*0 for some k> 1, L is called nil; 
if 7,(*) = 0 for some k> 1, L is called nilpotent. 

The Lk are ideals in L, L* = Z,(*!) + (jL;fc-i)p, and if L is nil, then it is 
also nilpotent (although the converse in not true) and Lp* = 0 for s 
sufficiently large [3]. An element # £ £ is nilpotent of index k if 
xp 9*0 and xp = 0 for some k>0; the subalgebra generated by x, 
i.e. the linear span of x, xp, xp, • • • , xp , is called nil-cyclic and is 
denoted by (x). An element hÇzL is called separable if hÇz(hp), the 
subalgebra generated by hp

y and a commutative (restricted) Lie 
algebra consisting of separable elements is called toral. 

The ^-algebra of a nil-cyclic Lie algebra is the group algebra of a 

2 Robert Wilson has shown that these same methods can be used to prove that 
the remaining algebras of Cartan type are also of unbounded type. 
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cyclic p-group and hence is of bounded type. On the other hand, the 
w-algebra of the direct sum of n > 1 nil-cyclic Lie algebras is the group 
algebra of the direct product of n>\ cyclic ^-groups, and so is of 
unbounded type. This is used to prove 

LEMMA A. Let L be a nil Lie algebra over the modular field K. Then 
L is of bounded type if and only if L is nil-cyclic. 

LEMMA B. Let L = H@{x) (semidirect) over the algebraically closed 
field K of characteristic p>0, where H is a toral subalgebra and (x) is 
the nil-cyclic ideal generated by the nilpotent element x of index k>0. 
Then every indecomposable {restricted) L-module has dimension Spk 

and is a homomorphic image of a p.i.m. of the u-algebra of L. 

THEOREM 10. Let L be a nilpotent {restricted) Lie algebra over an 
algebraically closed field of characteristic p. Then L is of bounded type 
if and only if L = H®(x), where H is a toral ideal and (x) is the nil-
cyclic ideal generated by the nilpotent element x {either H or x may be 
trivial). 

PROOF. Suppose L is of bounded type; we may assume L is not nil. 
One may take H=Lk, where Lk = Lk+i and Lk={Lk)p. If L/H is to be 
of bounded type, it is nil-cyclic and one then shows that the extension 
O-^H—ïL—ïL/H—ïO splits. The converse is clear. 

5. Solvable Lie algebras. Even over an algebraically closed field, 
a solvable restricted Lie algebra need not satisfy Lie's theorem, that 
is, a representation of a solvable Lie algebra need not be simulta­
neously triangularizable. If, however, L = H®N (semidirect), where 
H is a toral subalgebra and N is a nil ideal, L is said to be strongly 
solvable and does satisfy Lie's theorem. In fact, this property charac­
terizes strongly solvable Lie algebras. Over a perfect field, a solvable 
Lie algebra L is strongly solvable if and only if [ i , L] consists of nil-
potent elements, in which case the set of all nilpotent elements of L 
forms a maximal nil ideal [ l l ] . 

LEMMA C. Let L = H@N {semidirect) over an algebraically closed 
field of characteristic p^3> where H is a toral subalgebra and N is a nil 
ideal with basis e, ƒ, where [e, ƒ] = 0 and ep =fp = 0. Then L is of un­
bounded type. 

THEOREM 11. A strongly solvable restricted Lie algebra over an alge­
braically closed field of characteristic p^S is of bounded type if and only 
if its maximal nil ideal is nil-cyclic. 

PROOF. Let L = H®N, Ha. toral subalgebra, and N the maximal 
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nil ideal of L ; assume neither H nor N is trivial and that N is not nil-
cyclic. If 2V'« [N, N]+N*>, then N' is an ideal of L and N = N/N' is 
a commutative Lie algebra with trivial £-power mapping. Then 
L/N' — "H®JÎ (semidirect), where 71 ̂ H and N is the direct sum of 
one-dimensional £T-modules. The fact that N is nil but not nil-cyclic 
implies dim 7f^2, and we may, if necessary, factor N/N' by an ideal 
of codimension 2 and so assume dim "N is exactly 2. From Lemma C 
it follows that L/N', hence L, is of unbounded type. The converse 
is clear. 

A Lie algebra L with center C is said to be centrally strongly solvable 
if L/C is strongly solvable; it is not hard to see that these algebras are 
characterized by the nilpotency of [L, L], 

THEOREM 12. A centrally strongly solvable restricted Lie algebra L 
over the algebraically closed field K of characteristic p^3 is of bounded 
type if and only if either 

(i) L is strongly solvable with nil-cyclic maximal nil ideal or (ii) L = H 
®Ke (as vector spaces), where H is a toral subalgebra and 09e [e, H] 
QKe,09*ePEH. 

DEFINITION. Let L be a restricted Lie algebra and M a finite-
dimensional L-module. M may be considered as a commutative re­
stricted Lie algebra with trivial p-power mapping. The split extension 
of L by M is the restricted Lie algebra LM whose underlying space is 
L@M, with product and p-poyver mapping determined by the action 
of L on M (see [6]). 

I t is clear that M is a nil ideal of LM and that if LM is of bounded 
type, so is L. Partial conditions for a converse are included in the 
following: 

THEOREM 13. Let L be a restricted Lie algebra over the algebraically 
closed field K of characteristic p>3 such that L is of bounded type and 
either 

(i) toral, 
(ii) strongly solvable, or 

(iii) centrally strongly solvable. 
Let M?*Q be a finite-dimensional L-module. Then the split extension LM 

is of bounded type if and only if L is toral and M is 1-dimensional. 
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