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Introduction. It is known [13] that a Lie algebra over a modular
field has indecomposable representations of arbitrarily high dimen-
sionalities. If, however, the Lie algebra and its representations are
required to be restricted (see [6, Chapter 5] for definitions), this need
no longer be the case.

A restricted Lie algebra for which the degrees of its (restricted)
indecomposable representations are bounded by some constant is
said to be of bounded type; one for which this is not the case is said to
be of unbounded type.

1. The simple three-dimensional Lie algebra, 4. Let 4, be the
split simple three-dimensional Lie algebra over the field K of char-
acteristic > 3. Then 4, has a basis ¢, f, & with [e, f]=h, [e, h]=2e,
[f, ] = —2f and with p-power mapping given by e?=fr=0, h?=h.
There are p inequivalent irreducible (restricted) modules for 4,
classified by their highest weight. Let M), 0SA=<p—1, be the irre-
ducible 4;-module with highest weight A, so that [M,: K]=\+1 [5].

Let U be the u-algebra [6] of 4, and U= > ", ® U; its decom-
position into its principal indecomposable modules (p.i.m.). Since U
is a symmetric algebra [9] each U; has a unique top and bottom
composition factor, these are isomorphic, and each M, is isomorphic
to the top composition factor of some U; [2].

If M is an A;-module, denote by M~M,,, My, - + -, M,, the fact
that the M,,, in the given order, are the composition factors of some
composition series for M,

THEOREM 1. Let UN), 0SA=p—1, be a p.i.m. of U whose top com-
position factor is isomorphic to M. Then

() Up—1)=M, and [Ulp—1): K]=p.

(i) If N#=p—1, then UN)~ M\, M,, M,, M\, where N\+y=p—2,
and [UQN): K]=2p.

1 These results are contained in a dissertation submitted to Yale University in
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The radical R of U is the two-sided ideal generated by the elements
e*~1(h+1) and (h+1)fr—! [10]. It is not hard to show that R? is gen-
erated, as a two-sided ideal, by e*~1(h+41)f7~1, and R*=0.

THEOREM 2. Let M be an Ar-module for which MR25#0. Then M has
a direct summand isomorphic to U(N) for some N=p—1.

THEOREM 3. Let M be an indecomposable Aiy-module for which
MDOMRDMR?=0. Then there exists a fixed N\, 0 SN=p—2, such that
the socle of M= MR =the direct sum of copies of My, and M/MR is
the direct sum of copies of M,, where N\+vy=p—2.

COROLLARY. If M is an indecomposable Ai-module with exactly two
composition factors, then M~M,, M, for some 0SAN=p—2 and
N+y=p—2, sothat [M: K]=p.

THEOREM 4. For every positive integer k, there exists an indecomposa-
ble Ay-module M with [M: K| =k, so that A, is of unbounded type.

2. The classical Lie algebras [8]. Let T be a finite-dimensional
associative algebra (with 1), and let P be a subalgebra (with 1) such
that T is a finitely generated left and right P-module. If M is a right
P-module, form M®pT and define (D ;m;®t:)t= D im:®tit for
m;&EM and ¢, t;&T. With this, M ® pT becomes a T-module, denoted
by M7, Suppose that for any indecomposable P-module M, the map-
ping m—m®1, m& M, is a P-isomorphism of M onto a P-direct sum-
mand of M7. Then if P has indecomposable representations of arbi-
trarily high dimensionalities, the same is true of T (see [2], for ex-
ample).

This is used to prove

THEOREM 5. Let L be a restricted Lie algebra and A a restricted sub-
algebra of L such that L=A® Y ., ®B; (as vector spaces), where the
B; are restricted subalgebras with [A, B;1ZB;. Then if A is of un-
bounded type, so is L.

In particular, if L is a classical Lie algebra one may imbed the alge-
bra A4; in L in such a way that the conditions of Theorem 5 are satis-
fied.

THEOREM 6. Let L be a classical Lie algebra over a field of charac-
teristic p> 3. Then L is of unbounded type.

Suppose L is a Lie algebra over the field F of characteristic >3,
and that for some extension field K of F, the Lie algebra Lx=L® rK
is classical. L is called an F-form of the classical Lie algebra Lg.
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It is known that K may be assumed to be a finite Galois extension of
F [12, Chapter 4]. It follows from the next, more general, theorem
that the forms of the classical Lie algebras are all of unbounded type.

THEOREM 7. Let T be a finite-dimensional associative algebra (with 1)
over the modular field F. Let K be a finite Galois extension of F such that
Tx=TQrK is of unbounded type. Then T is of unbounded type (over F).

3. The Jacobson-Witt algebras and simple subalgebras.

THEOREM 8. Let Wi be the Witt algebra [4]. For k=1, 2, - - -, there
exists an indecomposable (restricied) representation of Wi of dimension
kp (p>2 is the characteristic of the base field), so that Wy is of un-
bounded type.

Methods analogous to those used in the proof of Theorem 6 (where
the part played by 4, in that theorem is assumed here by W) may
be used to prove

THEOREM 9. The Jacobson-Witt algebras W, [4] and their simple
subalgebras Vi, [1] are all of unbounded type.

It seems quite likely that all known simple restricted Lie algebras,
i.e., those of classical and Cartan type [7], are of unbounded type.?

4. Nilpotent Lie algebras. Let L be a finite-dimensional restricted
Lie algebra over the field K of prime characteristic p, and set L =1,
Lutb=[L, LP] for j=1. If Sis a subset of L, denote by S the
linear span of the elements s?, s&S, so that Sv"“g (Sl’k)f‘.

DEFINITION. Set Ly=L and Lk=L<k>+(L<k—1))P+(L<k-2>)?’+ s
+ L7 for k>1. The series L=LDLyDL;D - - - is the (restricted)
lower central series for L, and if L; =0 for some k> 1, L is called nl;
if L® =0 for some k>1, L is called nilpotent.

The L; are ideals in L, L;=L® 4 (L;_4)?, and if L is nil, then it is
also nilpotent (although the converse in not true) and L*' =0 for s
sukﬁ_ilciently large [3]. An element x&L is nilpotent of index & if
x? 0 and x? =0 for some k>0; the subalgebra generated by x,
i.e. the linear span of x, x?, %, .- xPH, is called nil-cyclic and is
denoted by (x). An element #EL is called separable if £E (h?), the
subalgebra generated by k?, and a commutative (restricted) Lie
algebra consisting of separable elements is called toral.

The u-algebra of a nil-cyclic Lie algebra is the group algebra of a

2 Robert Wilson has shown that these same methods can be used to prove that
the remaining algebras of Cartan type are also of unbounded type.
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cyclic p-group and hence is of bounded type. On the other hand, the
u-algebra of the direct sum of #>1 nil-cyclic Lie algebras is the group
algebra of the direct product of #>1 cyclic p-groups, and so is of
unbounded type. This is used to prove

LEMMA A. Let L be a nil Lie algebra over the modular field K. Then
L is of bounded type if and only if L is nil-cyclic.

LeEmMA B. Let L=H® (x) (semidirect) over the algebraically closed
field K of characteristic p>0, where H is a toral subalgebra and {(x) is
the nil-cyclic ideal generated by the nmilpotent element x of index k> 0.
Then every indecomposable (restricted) L-module has dimension = p*
and is a homomorphic image of a p.i.m. of the u-algebra of L.

THEOREM 10. Let L be a nilpotent (restricted) Lie algebra over an
algebraically closed field of characteristic p. Then L is of bounded type
if and only if L=H®® (x), where H is a toral ideal and (x) is the nil-
cyclic ideal generated by the nilpotent element x (etther H or x may be
trivial).

ProoF. Suppose L is of bounded type; we may assume L is not nil.
One may take H =L, where L; =L, and L= (L;)?. If L/H is to be
of bounded type, it is nil-cyclic and one then shows that the extension
0—H—L—L/H—0 splits. The converse is clear.

5. Solvable Lie algebras. Even over an algebraically closed field,
a solvable restricted Lie algebra need not satisfy Lie’s theorem, that
is, a representation of a solvable Lie algebra need not be simulta-
neously triangularizable. If, however, L=H® N (semidirect), where
H is a toral subalgebra and N is a nil ideal, L is said to be strongly
solvable and does satisfy Lie’s theorem. In fact, this property charac-
terizes strongly solvable Lie algebras. Over a perfect field, a solvable
Lie algebra L is strongly solvable if and only if [L, L] consists of nil-
potent elements, in which case the set of all nilpotent elements of L
forms a maximal nil ideal [11].

LeMMA C. Let L=H®N (semidirect) over an algebraically closed
field of characteristic p =3, where H is a toral subalgebra and N is a nil
ideal with basis e, f, where [e, f]=0 and e?=fr=0. Then L is of un-
bounded type.

THEOREM 11. A4 strongly solvable restricted Lie algebra over an alge-
braically closed field of characteristic p = 3 is of bounded type if and only
if its maximal nil ideal is nil-cyclic.

ProoF. Let L=H@® N, H a toral subalgebra, and N the maximal
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nil ideal of L; assume neither H nor N is trivial and that N is not nil-
cyclic. If N’= [N, N]+N>?, then N’ is an ideal of L and N=N/N' is
a commutative Lie algebra with trivial p-power mapping. Then
L/N'=H®N (semidirect), where H =~H and N is the direct sum of
one-dimensional H-modules. The fact that N is nil but not nil-cyclic
implies dim N =2, and we may, if necessary, factor N/N’ by an ideal
of codimension 2 and so assume dim X is exactly 2. From Lemma C
it follows that L/N’, hence L, is of unbounded type. The converse
is clear.

A Lie algebra L with center C is said to be centrally strongly solvable
if L/C is strongly solvable; it is not hard to see that these algebras are
characterized by the nilpotency of [L, L].

THEOREM 12. A centrally strongly solvable restricted Lie algebra L
over the algebraically closed field K of characteristic p =3 is of bounded
type if and only if either

(i) L is strongly solvable with nil-cyclic maximal nil ideal or (ii) L=H
@ Ke (as vector spaces), where H is a toral subalgebra and 05 [e, H]
CKe,0#e?c H.

DEFINITION. Let L be a restricted Lie algebra and M a finite-
dimensional L-module. M may be considered as a commutative re-
stricted Lie algebra with trivial p-power mapping. The split extension
of L by M is the restricted Lie algebra L whose underlying space is
L& M, with product and p-power mapping determined by the action
of L on M (see [6]).

It is clear that M is a nil ideal of L™ and that if L¥ is of bounded
type, so is L. Partial conditions for a converse are included in the
following:

THEOREM 13. Let L be a resiricted Lie algebra over the algebraically
closed field K of characteristic p >3 such that L is of bounded type and
either

(i) toral,
(ii) strongly solvable, or

(iii) centrally strongly solvable.

Let M50 be a finite-dimensional L-module. Then the split extension LY
is of bounded type if and only if L is toral and M is 1-dimensional.

BIBLIOGRAPHY

1. R. Block, New simple Lie algebras of prime characteristic, Trans. Amer. Math.
Soc. 89 (1958), 421-449.

2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative
algebras, Interscience, New York, 1962.



1968] RESTRICTED LIE ALGEBRAS OF BOUNDED TYPE 331

3. N. Jacobson, Restricted Lie algebras of characteristic p, Trans. Amer. Math. Soc.

50 (1941), 15-25.
4. , Classes of restricted Lie algebras of characteristic p. 11, Duke Math. J.

10 (1943), 107-121.

5. , A note on three dimensional simple Lie algebras, J. Math. Mech. 7 (1958).
823-831.
6. , Lie algebras, Interscience, New York, 1962.

7. A. L. Kostrikin and I. Shafarevitch, Cartan pseudo-groups and Lie p-algebras,
Dokl. Akad. Nauk, SSSR 168 (1965), 740-742 =Soviet Math. Dokl. 6 (1965), 715-718.

8. W. H. Mills and G. B. Seligman, Lie algebras of classical type, J. Math. Mech. 6
(1957), 519-548.

9. J. R. Schue, Symmetry for the enveloping algebra of a restricted Lie algebra, Proc.
Amer. Math. Soc. 16 (1965), 1123-1124.

10. G. B. Seligman, The complete reducibility of certain modules, mimeographed,
Yale Univ., 1961.

11. , Some remarks on Lie p-algebras, mimeographed, Yale Univ., 1967.

12. , Modular Lie algebras, Ergebnisse der Math. und ihrer Grenzgebiete,
vol. 40, Springer-Verlag, Berlin, 1967.

13. H. Zassenhaus, Representation theory of Lie algebras of characteristic p, Bull.
Amer. Math. Soc. 60 (1954), 463-469.

TriNITY COLLEGE



