
GEOMETRIC PROGRAMMING: A UNIFIED DUALITY THEORY 
FOR QUADRATICALLY CONSTRAINED QUADRATIC PRO­

GRAMS AND /^-CONSTRAINED /^-APPROXIMATION 
PROBLEMS1 

BY ELMOR L. PETERSON AND J. G. ECKER 

Communicated by L. Cesari, August 31, 1967 

The duality theory of geometric programming as developed by 
Duffin, Peterson, and Zener [ l] is based on abstract properties 
shared by certain classical inequalities, such as Cauchy's arithmetic-
geometric mean inequality and Holder's inequality. Inequalities with 
these abstract properties have been termed "geometric inequalities" 
( [ l , p. 195]). We have found a new geometric inequality, which we 
state below, and have used it to extend the "refined duality theory' ' of 
geometric programming developed by Duffin and Peterson ( [2] and [l, 
Chapter VI]) . This extended duality theory treats both quadrati-
cally-constrained quadratic programs and /^-constrained ^-approxi­
mation problems. By a quadratically constrained quadratic program 
we mean: to minimize a positive semidefinite quadratic function, 
subject to inequality constraints expressed in terms of the same type 
of functions. By an Zp-constrained ^-approximation problem we 
mean: to minimize the lp norm of the difference between a fixed 
vector and a variable linear combination of other fixed vectors, sub­
ject to inequality constraints expressed by means of lp norms. 

Both the classical unsymmetrical duality theorems for linear pro­
gramming (Gale, Kuhn and Tucker [3], and Dantzig and Orden [4]) 
and the unsymmetrical duality theorems for linearly-constrained 
quadratic programs (Dennis [5], Dorn [6], [7], Wolfe [8], Hanson 
[9], Mangasarian [lO], Huard [ l l ] , and Cottle [12]) can be derived 
from the extended duality theorems that we state below and have 
proved on the basis of the new geometric inequality. 

The new geometric inequality is 

N+l / N _ x \ 

X *<y< ^ y*r+il ] £ pi I Xi — hi \P% + (XN+I — for+i) J 
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which is valid for each x in E^+1 and each y in the cone 

T = {y G EN+11 yN+i ^ 0, and yN+i = 0 only if y = o}, 

with the understanding that ]Cf ^ M M ^ I ^ I
 w *s defined to be zero 

when y = 0. Here b = (bi, #2, • • • , ôiv-4-1) is an arbitrary, but fixed, 
vector in Ex+i, and pi and #»• are arbitrary, but fixed, real numbers 
that satisfy the conditions pi, qi>l and l/pi+l/qi=l, i = l , 2, 

Every quadratically-constrained quadratic program and every 
/p-constrained /^-approximation problem are special cases of the fol­
lowing program. 

PRIMAL PROGRAM A. Find the infirment of G0(x) subject to the follow-
ing constraints on x. 

(1) Gk(x)^0foreachkin {l, 2, • • • , r} . 
(2) z£(P. 
Here 

Gk(x) = J^pi I a* — bi \V% + («]*[ — b]k[), k = 0, 1, 2, • • • , r, 
w 

[&] = {w*, *»*+ 1, • • • , » * } , * = 0, 1, 2, • • • , r, 

]*[ = »*+ 1, £ = 0, 1, 2, • • • ,r , 
and 

m0 = 1, mi = n0 + 2, w2 = n% + 2, • • • , mr = wr_x + 2, ^r + 1 = w. 

rfe^ z/£c/0r b = (&i, &2, • • • , bn) is an arbitrary, but fixed, vector in En, 
and the arbitrary, but fixed, constants pi satisfy the condition pi>\ for 
each i in [k], fe = 0, 1, 2, • • • , r. The set <P is a fixed, but arbitrary, 
vector sub s pace of En. 

To put an arbitrary quadratically-constrained quadratic program 
with m independent variables Zi, • • • , zm into the form of primal 
program A, first observe that each positive semidefinite quadratic 
function (J)s*C»+c'2 can be factored as (%)(Dz)*(Dz)+c'z where D 
is an appropriate mXnt matrix. In particular, the objective function 
for such a program can be factored to give a matrix D0 and a row 
vector Co'. Correspondingly, the &th constraint can be factored to give 
a matrix A, and a row vectored. Let M== [D0, c0', Di, ci', • • • ,Dr, c r ' ] ' 
and specialize primal program A by letting 

nk=(k + i)m+k, k = 0, 1, • • • , r 

pi —2 for each i£[&], k = 0, 1, • • • , r, 

bi = 0 for each i£[fc], k = 0, 1, • • • , r. 
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Finally, identify (P with the column space of the above matrix M; 
that is, let x = Mz, With these specializations, primal program A is 
equivalent to the quadratically-constrained quadratic program. 

All linearly-constrained quadratic programs can be obtained from 
the most general quadratically-constrained quadratic program by 
choosing the ith. row vector of M equal to 0 for each i in [k]9 

k — 1, 2, • • • , r. Moreover, all linear programs can be obtained by 
further restricting M so that its ith row vector equals 0 for each 
i in [0]. 

To obtain from primal program A the most general /^-constrained 
/p-approximation problem with m spanning vectors, choose pi=:pk for 
each i in [k], k = 0, 1, • • • , r, and identify (P with the column space of 
an arbitrary nXm matrix M with ]k[ih row vector equal to 0 for k 
= 0, 1, 2, • • • , r. 

The dual program corresponding tö primal program A is 

DUAL PROGRAM B. Find the supremum ofv(y) subject to the following 
constraints ony. 

(1) yioi = i. 
(2) For each integer k in { l , 2 , • • • , r } the vector component ywi^O, 
and ym — 0 only if;y,= 0 for each i in [k], 
(3) yesx 

Here 

»(y) = - Z ) \ ]C (?< y\hiq% I yi\q% + fayù + *i*r^]*i> 
A - 0 V [k] ) 

where [k], ]k[, and r are as defined in primal program A. The fixed 
vector b = (6i, &2, • • • , bn) is identical to the vector b of primal program 
A, and the constants qi are determined from the constants pi of primal 
program A by the condition 

1/pi + 1/qi — 1 for each i in [k], k = 0, 1, 2, • • • , r. 

The subset 3D of En is the orthogonal complement of the vector subspace (P 
of primal program A. 

If for primal program A we take any linearly-constrained quadratic 
program, or any linear program, then correspondingly dual program 
B reduces to the well-known dual program. To recognize this, two 
recollections and two elementary observations are needed. First, 
recall that appropriate row vectors of the matrix M must be set equal 
to 0 and then observe that the dual variable yi corresponding to such 
a row vector is essentially unconstrained. Second, recall that &, = 0 
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for each i in [k], k = 0, 1, 2, • • • , r, and then observe from the form 
of the resulting dual objective function v that when the variable yi 
is essentially unconstrained for some i in some [k] this variable yi 
can be set equal to zero without changing the constrained supremum 
of v(y). In the linearly-constrained quadratic case v reduces to the 
quadratic function 

v(y) = - — Z) ?< - *]o[ - IL bmym. 
1 [0] 1 

In the completely linear case v further reduces to the linear function 

r 

i 

We shall use the following standard terminology in stating our 
duality theorems. The objective functionîor a program is the function 
to be optimized (Go or v in our theory). A program is consistent if there 
is a t least one point that satisfies its constraints. Each such point is 
said to be a, feasible solution to the program. The constrained infimum 
(supremum) of the objective function for a consistent program is 
termed the infimum (supremum) of the program. A feasible solution to 
a program is optimal if the resulting value of the objective function 
is actually equal to the infimum (supremum) of the program. The 
infimum (supremum) of a program with an optimal feasible solution 
is said to be the minimum (maximum) of the program. Thus a program 
can have an infimum (supremum) without having a minimum (maxi­
mum), but not conversely. 

The following existence theorem relates primal program A and its 
dual program B. 

THEOREM 1. If primal program A is consistent, then it has a finite 
infimum MA if, and only if, its dual program B is consistent. If dual 
program B is consistent, then it has a finite supremum MB if, and only 
if, its primal program A is consistent. 

Unlike Theorem 1, the following duality theorem is not symmetri­
cal relative to primal program A and its dual program B. 

THEOREM 2. If primal program A and its dual program B are both 
consistent, then 

(I) Program A has a finite infimum MA and program B has a finite 
supremum MB, with MA = MB-

(II) The infimum MA of program A is actually a minimum. 
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(III) The supremum MB of program B is actually a maximum if, and 
only if, there are nonnegative Kuhn-Tucker (Lagrange) multipliers 
that solve the saddle-point problem for program A. 

Conclusion III can be strengthened so as to make Theorem 2 sym­
metrical relative to primal program A and its dual program B, if the 
class of programs is restricted to those programs for which primal 
program A has linear constraints. This strengthening is due to the 
well-known fact that each convex program with linear constraints 
has Kuhn-Tucker multipliers if it has a minimum. 

The following duality theorem characterizes the sets of optimal 
feasible solutions. 

THEOREM 3. Given an optimal feasible solution x' to primal program 
A, a feasible solution y to dual program B is optimal if, and only if, y 
satisfies the conditions 

y\u\Pk<y) = 0 , k = 1, 2, • - • , r, 

and 

yi = :V]*[(sgn [xl - bi]) | x{ - bi I'*-1, i G [*], * « 0, 1, • • • , r. 

For such an optimal feasible solution y ' the number s y'ikbk = 1,2, • • •, r, 
are Kuhn-Tucker multipliers f or primal program A. Given an optimal 
feasible solution y' to dual program B, a feasible solution x to primal 
program A is optimal if, and only if, x satisfies the conditions 

«y]A[Gjfc(x) = 0 , k ~ 1, 2, • • • , r, 

and 

Xi = (sgn yi)( | y'i\/y\kù *%~ + *<> *£[*]> * G -P> 

where 

P~ {*l>î«>o}. 

Proofs for the preceding theorems will be given elsewhere. Sensi­
tivity analyses and a computational algorithm that takes advantage 
of the essentially linear of the dual constraints will be described in 
forthcoming papers. 
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