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1. Introduction, Let 3Z(Rn) be the Schwartz space of infinitely dif­
ferentiatie real functions on Rn, the Euclidean w-space, with compact 
supports, and let F: X(Rn)—*R be a map where R is the class of real 
random variables on a (fixed) probability space. Then F is said to be 
a generalized random field {process if n— 1) if it is linear and continu­
ous. Here continuity means that if {fm} C.3£(Rn) and fm—>0 in the 
topology of 3C(i£n), then F(fm)—>0 in probability. Such an F is said 
to have independent values if F (J) and F(g) are mutually independent, 
whenever / , g in 3Z(Rn) have disjoint supports. Let M(-): 3Z(Rn) 
—>scalars, be a functional such that (i) M(-) is bounded on bounded 
sets of 3Z(Rn); (ii) M(-) is continuous in that for any e>0 , there is 
a neighborhood V of zero in 3Z(Rn) such that ƒ — g E V implies 
| M(f)-M(g)\ <e; and (iii) M(f+g) = M(f)+M(g) whenever /and g 
have disjoint supports. Such a functional M(*) is termed local by 
Gel'fand and Vilenkin [4, Chapter I I I , §4.1, footnote 2] where they 
raised the problem of characterizing M(-). Local functionals play a 
key role in the theory of generalized random fields with independent 
values. A special form of M(-) was used by Gel'f and in his study of 
such generalized random processes (cf. [3] and [4]). The purpose of 
this note is to state some results on the characterizations of local 
functionals and, as applications, to present generalizations of the 
Lévy-Khintchine representation formulas for characteristic func­
tionals of generalized random fields with independent values. These 
results extend and complete the fundamental work of Gel'fand (cf. 
[3] and [4]) in many ways. The proofs and subsidiary results will 
be given elsewhere. 

The concept of generalized random processes was independently 
introduced by Gel'fand [3] and Itô [5] who studied the generalized 
processes with independent values and the generalized stationary 
processes, respectively (see also [lO]). The latter results were ex­
tended to certain nonstationary random fields in [7]. Another aspect 
of the theory was considered by Urbanik [9], for processes with inde­
pendent values. 

1 This research was supported under the NSF grants GP-5921 and GP-7678. 
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2. Local functionals. Following [4], a local functional M(-) on 
3Z(Rn) is said to be of order m ( < 00) if Af(-) is continuous in the 
topology of 3Zm(Rn), the space of m times, continuously differentiate 
real functions with compact supports, on Rn. (For the theory of these 
spaces, see [8].) Also a subset N of Rn is said to be the support of 
M(') if: (a) N is closed, (b) for every open set V in Rn such that 
VC\N^0; there is a g in 3C(Rn) with support in VT\N such that 
M(g)?*0; and (c) for every ƒ in 3Z(Rn) with support in Rn — N, 
M(f) = 0. Now the following characterizations hold. 

THEOREM 1. If M(-) is a local functional on 3Z(Rn) of order m ^ O , 
then it can be represented as (D = d/(dh • • • dtn)y etc) 

(l) M(f) = f *(ƒ(*), zy(0, • • •, D-/Ö), W ) , ƒ G *(*•), 

where JJL is a Borel measure in Rn which is bounded on compact sets and 
where (i) <£(-, • » • • • , t) is continuous for almost all t; (ii) 
$(0, 0, • • • , 0, t) = 0, a.a.(/) ; (iii) $(x, y, - • • , z, -) is a Borel function 
for each real x, y, • • • , z; and (iv) for each compact A CRn and each 
S > 0 such that f&X(Rn), supp(f)CA and | (!>ƒ) O) | g Ô, O^i^m, 
implies | *(ƒ(/), #ƒ(*), ' • • , -Dm/(0, t)\ ^c(A, 5 )< *> a.a.(J), wfere 
c(^4, ô) is a constant depending only on A and b. In particular, if M(-) 
has compact support then it is of finite order and a representation of type 
(1) holds for some m^0. Conversely, a function <£ and a Borel measure ju 
satisfying the above conditions define a local functional on 3C(i?n) 
through (1). 

If Th is the translation operator on 3Z(Rn), so that rhf(x) =f(x+h), 
a local functional M(-) is translation invariant if M(Thf)^M(J)f 

ƒ £ 3£(Rn), h(ERn- For such functionals the above result can be refined 
as follows. 

THEOREM 2. If M(-) is a translation invariant local functional on 
3Z(Rn) of order rn^O, then it is given by 

(2) M(f) = f *(ƒ«), Df(i), • • • , D™f{t))d»{t), f E X(R»), 
J Rn 

where $(0, • • • , 0 ) = 0 , $ W A continuous function satisfying conditions 
(i)-(iv) #ƒ Theorem 1, awd /* w tffo Lebesgue measure. Similar statements 
hold for M(-) with compact support. 

The next result generalizes the above in a different direction. 
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THEOREM 3. Let G be a locally compact topological group and C^G) 
be the space of real continuous functions on G with compact support. If 
M(>) on Coo(G) is a local functional, then it can be represented as 

(3) M(f) - f *(/(g) , g)dlx(g)J ƒ G CJ®, 
J G 

where /x is a Borel measure which is bounded on compact sets and where 
^ on RXG satisfies; (i) >£(0, g) = 0, a.a.(g); (ii) >£(•, g) is continuous, 
&•&•(#) ; Oh') &(x, •) is a Borel function f or xÇzR] and (iv)for each com­
pact AQG and each S > 0 such thatfGC^G), supp(f) QA awd | / | g ô 
implies \^f(f(g), g)\ ^ci(A, ô) < oo, a.a.(g), w/^re /fee constant C\(A, S) 
depends only on A and 8. ƒƒ moreover M( • ) is translation invariant on 
Coo(G), then & on RXG of (3) caw &£ chosen to be a function of the first 
variable only (so that ^f is defined on R and satisfies (i)-(iv)) and fx is 
the Haar measure on G. If M( • ) has compact support (but not necessarily 
translation invariant), then the measure ju of (3) above is also bounded. 

REMARK. A special case of Theorem 3, when C^G) is replaced by 
the space of bounded functions on G vanishing off compact sets and 
G is abelian, was obtained by Allan D. Martin [6]. (Unfortunately 
Martin died in September 1964, and his results were unpublished.) 

3. Generalized random fields. If F: 3Z(Rn)->R is a generalized 
random field, its characteristic functional Lo(-) is defined by L0(f) = 
E(eiF(J)) where E is the expectation operator. If F has independent 
values, then Loffi+fz) =£o(fi) -ioGW f o r / i , / 2 in 3Z(Rn) of disjoint 
supports and conversely (cf. [4]). Now the following result, on the 
structure of certain functionals can be given. First define a functional 
L(-) as 

L(f) =e*«\ fEX(R"). 

THEOREM 4. Suppose a functional Z(«) on 3Z(Rn) is given by (4) 
where M( • ) is an arbitrary local functional of finite order, say m, on 
3Z(Rn). Then L(<) is a characteristic functional (necessarily of some 
generalized random field with independent values) if and only if 

(5) expf J $>(#!, • • • , * > , t)dn(t) V %i G R, 

is positive definite as a function of xi, • • • , xv for all compact A CRn, 
where <ï> and ix are the same f unctions associated with M(-) through (1), 
the v being the total number of partial derivatives of order ^ m. 
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The necessity of (5) above answers affirmatively a question in 
[4, p. 285], even without translation invariance. The next result, 
which generalizes and completes the theory of Gel'fand [3], [4] in 
many ways, is a considerable extension of the Lévy-Khintchine repre­
sentation formula for the characteristic functions of stochastic pro­
cesses without fixed points of discontinuity and with independent 
(but not necessarily stationary) increments (cf. [2, p. 421, Equation 
(7.5)]) to the generalized random fields with independent (but not 
necessarily stationary) values. [A generalized random field has 
(strictly) stationary values if its characteristic functional L0(-) satis­
fies LQ(rhf) =Lo(ƒ),ƒ£tt(ie»), hER*.] 

THEOREM 5. Let !,(•) on X(Rn) be any functional given by (4) where 
M(-) is a local functional of order m on 3Z(Rn). Suppose the measure /x 
associated with M(-) by (1) is nonatomic. Then L(-) is a characteristic 
functional of a generalized random field on X(Rn) with independent 
values if and only if it can be given as 

(6) L(f) = exp | ƒ $(ƒ(/), Df(t), • • • , D™f(t), t)d^ , /eflC(U»), 

where <£ is given by the following formula, 

(7) #(x, t) = f [e«*.y> - «(y)(l + i{x,y))]a{dy; t) 
J \y\>o 

+ aQ(t) + £ a*(Ö 
l*l—i k\ 

where <r(*, /) is a positive tempered measure in Rvfor each tÇzRn, (x, y) 
is the inner product in Rv, <r(A, •) is a B or el function f or each Borel set 
A of Rv, and where for almost all tÇERn the following conditions hold: 

f \y\**(dy;0+ f <r(dy;t) < «o, 
/ o \ o<\y\éi J \y\>i 

\°) 
(1 - a(y))cr(dy; t) + aQ(t) = 0, £ ar+8(t)^rl £ 0. ƒ, LKI>0 H - l ' l - l 

Here the a(*)'s are some Borel functions on Rn depending on <ï> and a 
where a(-) is an entire analytic function of exponential type (i.e. a(EZ 
in the terminology of [4, Chapter I ]) such thata(y) — 1 has a zero of order 
3 at y = 0. (Also \k\ =ki+ • • • +K, \y\* = yl+ . . . +y2

v, £'s are 
complex numbers, k\ = ki\ • • • kv\, and xk = xl1 • • • x*v

v
y as in [8].) 
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Finallyy if L(>) is also translation invariant, then * of (7) does not in­
volve the last variable t and then a and a also do not involve t. (See [4] for 
the concept of tempered measure and the properties of the space Z.) 

4. Remarks, (a) Choosing a(-) appropriately in (7), one can 
deduce the classical Lévy-Khintchine formula [2, p. 421]. Also an 
exactly similar result holds for generalized random processes, with 
independent values, on C^G), using Theorem 3. 

(b) A representation of a general local functional M(') as M(<) 
= X)» Mn{*) where Mn is of finite order is not necessarily true, in 
contrast to the situation for distributions (cf. [8, p. 95, Théorème 
29]). In this sense Theorem 1 is the most general result obtainable on 
representations of M(*) and similarly Theorem 5 is a very general 
result in this direction. [However, the sufficiency of the latter result 
holds without the condition of nonatomicity of /x. ] 

(c) The proofs of the results of §2 employ and extend, in a detailed 
analysis, the results and techniques of [ l ] . Then the proofs of the 
results of §3 use this representation theory and several results of 
Chapters II and III of [4]. To prove the necessity of (5) one injects 
the space 3Zm(Rn) in a certain subspace of Tv(Rn) suitably, where Tv 

is the space of vector valued (with ^-components) continuous func­
tions on Rn with compact supports, and then associates a continuous 
functional ! ( • ) on T" whose restriction on the subspace is in one-to-
one correspondence with !,(•) of (4). The result is then deduced, by 
showing that L(-) is positive definite. The sufficiency of (5) and the 
proof of Theorem 5 are obtained by extending the methods of [4]. 
The formula (6) is useful for further study of the generalized random 
fields with independent values, in the same way as the classical for­
mula is useful in the study of processes with independent increments. 

(d) (Added in proof.) Concerning Theorem 1, one can make the 
following apparently more general statement. By considering c00-
partitions of unity in 3C subordinate to a given countable covering 
{Ai} of Rn which (by refinement if necessary) may be assumed locally 
finite and Ai relatively compact, one has M(f) =limr+O0Mr(f), ƒ£#£, 
where Mr(-) is a local functional on 3C of compact support, contained 
in Ar, so that it has finite order rnr. This yields the most general form 
of the formula (1) as 

(10 M(f) =lim»„ fR»$r(f(t), DM, • ' ' . D^f(t), t)dnr(t), /G5C, 

where {mr} is a (not-necessarily bounded) set of positive integers, 
and {$r}, {fa} satisfy the corresponding conditions of Theorem 1 
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(given for <ï>, fx). Similar statements hold with regard to Theorems 2, 
4 and 5. 

I thank Henry McKean for helpful comments and questions on the 
material of this paper. 
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