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1. Introduction. In the tangent space Mx to a Riemannian mani­
fold M at the point x, a conjugate point v is a point at which the dif­
ferential of the exponential map exp*: Mx—>M is singular. In M, a 
point y is a conjugate point to x if y = exp*. v for some conjugate point 
v in Mx. The conjugate locus in Mx is the set of conjugate points in 
Mx, and the conjugate locus in M at x is the set of conjugate points 
to x. 

Though there are a number of general results on the conjugate 
locus either in Mx or in M ([4], [6, p. 59], [ l l ] , [12] and [13]), the 
precise nature of this locus in special Riemannian manifolds seems 
to be known only in a few cases, such as the sphere, the projective 
spaces, and some two-dimensional manifolds ([2, pp. 225-226], [9] 
and [lO]). In the present note, we give a complete description of the 
conjugate locus at a point in the real, complex or quaternionic Grass­
mann manifolds. Besides being useful and interesting, this informa­
tion will extend the range of problems recently studied by Klingen-
berg [8], Allamigeon [l], Green [5] and Warner [12, 13]. The conju­
gate locus in the tangent space to a Grassmann manifold is more 
complex and will be the subject of a future note. 

In §2, we describe the Schubert varieties of which the conjugate 
locus in a Grassmann manifold is composed. In §3, we give some 
results concerning conjugate points in a Grassmann manifold. In §4, 
we state our main theorem. Details and proof will be omitted. For 
background information, the reader is referred to the author's 
paper [14]. 

2. Some Schubert varieties (cf. [3, Chapter 4] and [7, Chapter 
14]). Let i^be the field R of real numbers, the field C of complex num­
bers, or the field H of real quaternions; Fn+m an (w+w)-dimensional 
left vector space over F provided with a positive definite hermitian 
inner product; Gn(F

n+m) the Grassmann manifold of w-planes in Fn+tn. 
In Fn+m, let P be a fixed £-plane (Kp<n+tn), Z a variable n-

plane, and 

Vi « {Z: dim(Zn P) â /} (/ ^ 0), 

Wi = Vi\Vt+1 = \Z\ dim(Zn P) = /} (I ^ 0). 
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Then it is easy to see that Vi*=Gn(F
n+m) if / = max(0, p—m), and 

Vi is empty if l>min(n, p). For the remaining values of I, we can 
prove 

THEOREM 2.1. Let k be any integer such that 

max(l, p — m + 1) ^ 4 g min(n} p). 

(a) The subset Vk of Gn(F
n+m) is a Schubert variety 

(p - k, • • • , p - kf m, • • • , m), 

where p — k appears k times and m appears n~k times. The F-dimension 
of Vk is nm — k{m—p+k). 

(b) Vk+i is the singular locus of Vk. 
(c) Vk can be decomposed into the disjoint union 

Vu = Wk U Wk+1 \J • • • VJ Wmin(n,ph 

where 

Wmin(n,p} - Gn(F
p) if p> ny 

« {p} ifp = n, 

« Gm(Fn+m-rt if p < », 

and each Wi (èê^ni in(w, p) — 1) w a "tensor" bundle whose base 
space is Gi(Fp)XGn-i(F

n+m~p), whose standard fiber is the tensor 
product (Fn~1)*® F*"1 of an (n —I)-dimensional right vector space and 
a (p — l) dimensional left vector space, and whose group is the tensor 
product GL(n — l, F)®GL(p — l, F); the fiber of Wi over the point 
(x, y) EGi(Fp)XGn-.i(F

n+m-p) consists of all those n-planes Z such that 
ZC\P is the fixed l-plane x, and the projection of Z in the orthogonal 
complement of P in Fn+m is the fixed (n —I)-plane y. 

Two special cases are of interest to us. Let O be a fixed #-plane in 
Fn+m and Ox its orthogonal complement, and let 

Vi - {Z: dim (ZC\ O1) è l], ?i = \Z\ dim {ZC\0) è l). 

It turns out that the cut locus at the point O in Gn(F
n+m) is Vi (see 

[14, Theorem 9(b)]), and the conjugate locus at the point O in 
Gn(F

n+m) is the union of Vi or F2 and one of the IVs (see §4). 

3. Geodesies and conjugate points in Gn(F
n+m). As in [14], let 

Gn(F
n+m) be provided with the invariant Riemannian metric ds2 

= ^i(d0i)2
f where d$i (l^i^n) are the n angles between two con­

secutive w-planes in Fn+m. Then Gn(F
n+m) is a complete globally-
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symmetric space. I t is known that the geodesies in Gn(F
n+m), when 

viewed as a 1-parameter family of w-planes in Fn+m, are characterized 
by the following properties: (a) All the pairs of nearby w-planes of 
this family have common angle 2-planes (some of which may degen­
erate into angle 1-planes), and (b) the n angles between every pair of 
nearby w-planes are proportional to a fixed set of constants. 

Let O and A be any two points in Gn(F
n+m), and T any geodesic 

segment joining O and A. Then each common angle 2-plane of T 
either coincides with or contains an angle 2-plane between O and A. 
If q (resp. p) is the number of nondegenerate angle 2-planes of T 
(resp. between O and A), so that l g £ ^ g g m i n ( w , ra), then T is 
said to be of the (q—p + l)th type. Among the geodesic segments of the 
(q—p + l)th type joining O and A} the shortest ones are of length 

[(<?l)2 + . . . + (pjt + ( ? _ p)T*]int 

where 0i, • • • , 0P are the nonzero angles between O and A. Such a 
geodesic segment is called a minimal geodesic segment of the (q~p + l)th 
type. Obviously, a minimal geodesic segment of the feth type is shorter 
than one of the (£ + l ) th type. A minimal geodesic segment of the 
first type is a minimal segment in the usual sense. 

We can prove 

THEOREM 3.1. In Gn(F
n+m)f a point A is a conjugate point to the 

point O iff there exists a continuous family of (distinct) minimal geodesic 
segments of the first or the second type joining O and A. 

Concerning first conjugate points, we can prove 

THEOREM 3.2. (a) In a Gn(R
n+m), any conjugate point A to the point 

O is the first conjugate point to O along some minimal geodesic segment 
of the first or the second type joining O and A. 

(b) In a Gn(C
n+m) or Gn(H

n+m), a conjugate point A to the point O 
either is the first conjugate point to O along some minimal segment join­
ing O and A, or is such that the mid-point of some minimal geodesic 
segment T of the second type joining O and A is the first conjugate point 
to O along T. 

Given two points O and A in Gn(F
n+m)f the existence or non­

existence of a continuous family of minimal geodesic segments of the 
first or the second type joining them and the nature of such a family 
if it exists depend entirely on the field F and the dimensions of 
Ar\0L and AC\0. A study of the various possibilities leads to our 
next theorem. We first give a definition. 
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A conjugate point A to the point O in Gn(F
n+m) is said to be of 

type-order [k, h] if there exists a maximal continuous (then O) family 
of oo * (h è l ) minimal geodesic segments of the &th type joining O 
and Ay and k is the smallest integer possible. 

It follows from Theorem 3.1 that k = 1 or 2. 

4. Conjugate locus in Gn(F
n+m). Let O be any n-plane in JF»+m. 

FJ, Vi as defined in the last paragraph of §2; and Wi—Vi\Vi+u 
ïFi= Vi\?i+i. Then O is a point of Gn(F

n+m), and we have 

THEOREM 4.1. (a) In a Gn(R
n+m)f the conjugate locus at the point O is 

V2\J?X = (WjUWJU • • • UWjUÇÏÏiUftU • • • \JWn) if n<m\ 

V2\J?2 = (WJJWZ\J • • • \JWn)\J(Wjuffîz\J • • -UlTn) *ƒ w=w; 

VtWn^.x^iWjUWJU • • • UPF w )W(Tr n - W H-lUirn-m + 2W • • • U f » ) 

i/ n>m. 

Points of Wi and W\V2 are conjugate points to O of type-order 
[1, | / ( /~1)] and [2, w—w+2(Z—l)], respectively. 

(b) ira a G»(Cn+m), Jfee conjugate locus at the point O is 

VjJVi = (WjJWjJ • • • \JW^\J{WiJWiJ • • • \Jffîn) if n£tn; 

VjJV^*n = {WJUWJU • • • W^m)U(jrn~w+iU#n^n+2U • . • \JWn) 

if n>m. 

Points of Wi and J^i\ Vi are conjugate points to O of type-order [l, I2] 
and [2, 2(w—n+20~3], respectively. 

(c) In a Gn{Hn+m), the conjugate locus at the point O is 

VJJVi = (WJJWJU • • -UWnMWUWjJ • • -UlTn) if n^m; 

V1\J?n-<n+1=(W1\JW2KJ . . . VWJV{ff1^+1KJW%_m¥lJ • • • UJT«) 

if n>m. 

Points of Wi and W\V\ are conjugate points to O of type-order [l, 
/(2/+1)] and [2, 4(m —n+2l)—5], respectively. 

Theorem 3.2 shows that in a Gn(R
n+m) the first conjugate locus coin­

cides with the conjugate locus. It is known [14] that the minimum 
(or cut) locus in any Gn(/

?n+m) at the point O is Vi. Thus it follows 
from Theorems 3.2 and 4.1 that in a Gn(C

n+m) or Gn(H
n+m) the first 

conjugate locus coincides with the minimum locus. This is a special 
case of a known result due to Crittenden [4, Theorem 5], 

We conclude with two special cases of Theorem 4.1. 
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(1) The projective spaces FPm = Gi(Fm+l), m^l. In this case, we 
have the following results, already known (see, for example, [2, 
pp. 225-226]): 

RP* 

RPm, m>\ 

CPm, m^l 

HP**ttn^l 

Conjugate locus at 0 

Empty 

{0} 

0±\J{0} 

o±vio} 

Type-order of conjugate point 

{0}:[2,m-l] 

0±:[l,l),iO\:[2,2m-l] 

OMl.3], {0}:[2,4m-l] 

(2) The G2(F
m+2)t tn^2. In this case, we have 

G2(R*) 

Gi(Rm+2)t m>2 

G2(0+2), m^2 

G2(H«+2),m^2 

Conjugate locus at 0 

{0±}KJ{0} 

W£JWi\J{0} 

Wx\JWi\JWi\J{0} 

Wi\JWÏJffîi\J{0} 

Type-order of conjugate point 

f O ^ : [ l f l ] , { 0 } : [ 2 f 2 ] 

ÎF«: [l,l],iri: [2,111-2], {0}: [2,»] 

Wn [1,1], W2: [1,4] 
l^iWi: [2,2*1-3], { 0 } : [2,2«+l] 

Wi: 
Wi\Wn 

:1,31,1F.: [1,10] 
2,4m-5], {0}: [2,4w+3] 

where 

Wi= {Z:dim(ZnO x ) « l } , TVt = {Z:dim(ZPiO) = l} 

are respectively an (i(tn-~l)-plane" bundle and a "line" bundle over 
Wxr\ ffx = FP1 X FP™~\ and 

W% = {Z:dim(ZnOx) = 2} = {Ox} ifm = 2, 

= G2(F
m) iîm> 2. 
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