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Consider the nth order linear differential equation 

(0.1) Pn(D)[x] = 0, D[x] = dx/dt = x', 

where Pn(P) = Pn(t, D) and 

(0.2) Pn(f, X) = an(t)\
n + • • • + flo(0» <*»(0 > 0, 

is a polynomial with real-valued, continuous coefficients on a /-inter­
val L §1 deals with disconjugacy criteria for (0.1). §2 deals with the 
existence of "principal" solutions for a disconjugate equation (0.1), 
as well as with the existence of solutions having specified estimates 
for their logarithmic derivatives. Proofs and related results will 
appear elsewhere. 

1. Disconjugacy criteria. The differential equation (0.1) is said to 
be disconjugate (cf. [9], w = 2) on ƒ if no solution ( ^0 ) has n zeros, 
counting multiplicities, on 7. If ui, • • • , Uk are of class CA_1(7), we 
shall denote their Wronskian by W(ux> • • • , uk) = det(Di"l[uj])f 

for i, j=l, - - • , k. In particular, W(ui)^ui. 
DEFINITION. A set of functions ui, • • • , un-i of class Cn(I) is said 

to have property W (Polya [7]) or to be a wn(I)-system if 

(1.1) W(uh • • • , Uk) > 0 for k = 1, • • • , n - 1. 

DEFINITION. A set of functions ui, • • • , un-i of class £>(/) is said 
to be a TFW(J)-system if, for ft = l, • • • , # —1 and all sets of indices 
(1 S)*"(l)< ' • • < * ( * ) ( S » - 1 ) . 

(1.2) W ( « « D , • • • > *«*>) > 0 on ƒ, 

or, equivalently, 

W(uj, Uj+i, • • • , uk) > 0 for 1 g y ^ k S n — 1. 

In particular, (1.2) implies that Uk>0 and that 

(1.3) U{/Ui < • • • < U^t/Un-l* 
1 This research was partially sponsored by the Air Force Office of Scientific Re­

search, Office of Aerospace Research, United States Air Force, under AFOSR Con­
tract No. AF 49(638)-1382. 
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Since (0.1) is disconjugate on I if and only if it is disconjugate on 
every compact subinterval, it suffices to give disconjugacy criteria 
for the case that I is compact. 

THEOREM 1.1. (i) A sufficient condition f or (1.1) to be disconjugate 
on a compact interval I is that there exist a Wn(I)-system of functions 
ui, • • • , un-\ satisfying 

(1.4) ( - l ) « - f c P w ( 2 } ) [ « J è 0 f o r * » 1, • • • , * - 1 . 

(ii) A necessary condition is that there exist a Wn(I)-system of solu­
tions. 

Part (i) of this result can be considered a generalization of Sturm's 
comparison theorem for w = 2 in a form used by Bôcher, de la Vallée 
Poussin, and Wintner (cf., e.g., [2, Theorem 7.2, p. 362]). Part (ii) is 
related to a result of Pólya [7] (cf. [2, Exercise 8.3, p. 67 and p. 560]), 
which states that if (0.1) is disconjugate on a half-open interval ƒ 
and if 1° is the interior of / , then (0.1) has a wn(/°)-system of solu­
tions. In this direction, results of §2 imply 

PROPOSITION 1.1. The differential equation (0.1) is disconjugate on 
an open or half-open interval I if and only if it possesses a wn(I

0)-
system of solutions. 

The "only if" portion is false if wn is replaced by Wn* From Theorem 
1.1, we can deduce (with % = exp ajj) 

COROLLARY 1.1. Assume that the polynomial Pn(t, X) has only real 
zeros \i(t)S • • • ^Xn(/) separated by constants «i, • • • , an-i, that is, 
X i ( / ) g a i g X 2 ( 0 ^ • • • ^«n~i^X n (0- Then (0.1) is disconjugate on I. 

This sharpens one of the results of [3] obtained by very different 
methods. The proof of Theorem 1.1 and of most of the other theorems 
described here is by an induction on n. The success of this method 
depends on two factors: (1) the notion of a PFn-system which goes 
into a P7„-i-system during the induction and which together with 
(1.4) assures that ( - l ) n -* + 1 j3*è0 for £ = 0, • • • , n - 2 in (1.6); 
(2) the reduction from n to n — 1 by using the existence of a positive 
solution of (0.1) with suitable "monotony" properties. 

The existence statement in (2) is obtained by transforming (0.1) 
into a suitable first order system making the results of Hartman and 
Wintner [4] (cf. [2, pp. 506-510]) available. If m, • • • , wn~i is a 
wn(I)-system and unÇzCn(I) satisfies W(ui, • • • , un)>0, let w* 
= W(ui, • • • , Uk) for k = 1, • • • , n and coo = 1. We can write 
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Pn(D)[x] - Èp{(t)W(!H, ••-, Ut, X), &,(<) > 0, 
*'=0 

where j8o, • • • , j8n are uniquely determined, continuous functions 
(and W(ui, • • • , Ui, x) =x if i = 0). Correspondingly, if the vector 
y—(yu • • ' tVn) is defined by 

(1.5) yj = W(x,uu • • • ,%-i)/co,- for./ = 1, • • • ,n, 

then (0.1) is equivalent to the first order system for y, 

2 

/, *\ y* = ~ («i/wi-i«/+i)y/+i for i = 1, • • • , » - 1, 

y»' = - (wn î//5wcon) 2^ (~l)n~%-ico*;yA,. 

We can choose w„ so that /3w_i = 0. Also, if U\, • • • , ww~i is a Ww(/)-
system satisfying (1.4), then we can show that (~l)w""%~i(0 è 0 
for & = 1, • • - , n— 1. 

2. Principal solutions. The next result serves to define and give 
some of the properties of 1-5/, 2-nd, • • • , (w — l)-s/ principal solutions 
£i(0> ' • ' > £n-i(0 (at /=j8) of an equation (0.1) disconjugate on 
(a, j8). 

THEOREM 2.1. Let (0.1) ôe disconjugate on an open interval ƒ = (a, /3), 
— oogaj<j8goo. ZT^w /feere exists a set of solutions £i, • • • , £w_i w t ó 
/fee following properties 

(i) ? i > 0 0w 7 awd is unique up to positive constant factors; for 
& = 2, • • • , n — l,t;k> Of or t near ft and is unique up to positive constant 
factors and addition of linear combinations of fi, • • • , &-1. 

(ii) & , ' • • » £n-i is a wn(I)-system. 
(iii) For j=l, - • - , n — 2, £//£y+i—»0 as /-->j3. If x(t) is a solution of 

(0.1) linearly independent of £i, • • • , £*, tóew £*/#—>0 as /—»/3. 
(iv) If a<y<l3t I 7 = ( 7 , ]8)> ö« i «i, • • • , #»_i w a wn(Iy)-system 

of solutions or a Wn{Iy)-system satisfying (1.4), /fon, on Iyi 

fi/fi = « i A i and TF(£i, «i, • • • , « * ) s= 0 for & = 1, • • • , n — 1. 

In particular, for 7 < /< /? , £/ (0/?i(0 =inf x{(t)/x\(t), where the in-
fimum is taken over {xi: there exists a wn(Iy)-system of solutions 
X\, * * * , #n— 1 ƒ . 

(v) If #=£(/ , 7) w /fee solution of (0.1) satisfying 

x = D M = • • • = Z)W~2H = 0, (~\)n~lDn-l[%\ > 0 at / «= 7, 
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n~l 

Y] I D*[x] |2 = 1 at a point, independent of y, 

then &(*) = O (I) - l i rn (•(*, y) as 7->j3. 

Properties analogous to (iv) and (v) for £2, • • • , £n-i are obtained, 
in addition to characterizations of £2, • • • , £n-i under transforma­
tions of (0.1) (e.g., under the variation of constants x~i;iv). 

The idea of a principal solution in the case n~2 originated with 
Leighton and Morse [5] (cf. [2, pp. 350-361]). 

THEOREM 2.2. Let there exist a Wn(I)-systeni u\, • • • , un-i satisfying 
(1.4). Then (0.1) has positive, linearly independent solutions xi, • • • , xn 

satisfying 

(2.1) Xl/Xx g U{/U\ g %i/x% g • • • ^ Un-.\/un~\ g Xn/xn 

on J. If, in addition, there is a function UQ [and/or un] of class Cn(I) 
satisfying (~l)nPn(D) [u0]^0 [and/or Pn(D)[un]^0] and, for 
k = l, • • • , n — 1, 

UQ > 0, W(uo, • • • ,Uk) è 0 [and/or un > 0, W(uk, • • • , un) è 0], 

then x\[and/or xn] can be chosen to satisfy 

(2.2) ui /U0 S X{ /xi S u{ /ui [and/or u^-i/un-i ^ #»' /xn ^ ui /un]. 

If n~2, the result concerning (2.1) is essentially a theorem of 
A. Kneser (cf. [2, Corollary 6.4, p. 357]) applied after the variation of 
constants x = Uiv. Under different conditions on UQ, U\ and Ui, Olech 
[6] obtained Theorem 2.2. for w = 2. 

COROLLARY 2.1. If a\< • • • < a n - i in Corollary 1.1, then (0.1) tes 
positive, linearly independent solutions Xi, • • • , x„ satisfying 

X{/Xi S Oil 2̂ #2 /#2 ^ ' 4 • S «n-l =» ^n'An 

on I. If, in addition, there is a number a0 [and/or an] satisfying 
CCQ ^Xi(0 [and/or X»(/) Sotn], /Ae» Xi [awd/tfr #n] caw fo chosen to satisfy 

UQ g #ƒ/#i =2 <*i [and/or an- i ^ xi /xn ^ aw]. 

This result is given for w = 2 by Olech [6]. For n = 3, Schuur [8] 
obtained the existence of x2 (but not Xi, Xz) for ƒ = [O, 00). In his talk 
[8], Schuur mentioned that another proof for the existence of x% was 
given by L. Jackson (in a paper not available to me) by considering 
the second order, nonlinear differential equation for r~x'/x. In this 



i968] DISCONJUGATE »th ORDER DIFFERENTIAL EQUATIONS 129 

form, Schuur's result is contained in Hartman [ l] (cf. [2, Theorem 
5.2, p. 434]) after the translation of the variable r~»r~ (CLI+OLZ)/!. 
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