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1. Introduction. We study some systems of nonlinear functional-
differential equations of the form

¢)) X(t) = AX()) + B(X)X(@t -1+ C@), t=0,

where X=(x1, - - +, x,) is nonnegative, B(X,) =||B,~,~(t)” is a matrix
of nonlinear functionals of X (w) evaluated at all past timesw& [—7,¢],
and C=(Cy, - - -, C,) is a known nonnegative and continuous input

function. For appropriate 4, B, and C, these systems can be inter-
preted as a nonstationary prediction theory whose goal is to discuss
the prediction of individual events, in a fixed order, and at pre-
scribed times, or alternatively as a mathematical learning theory.
This interpretation is discussed in a special case in [1]. The systems
can also be interpreted as cross-correlated flows on networks, or as
deformations of probabilistic graphs.

The mathematical content of these interpretations is contained in
assertions of the following kind: given arbitrary positive and continu-
ous initial data along with a suitable input C, the ratios y;(t)
=B (1) (2.1 Bim(t))~! have limits as t— .

Our systems are defined in the following way. Given any positive
integer #; any real numbers «, %, >0, and 7=0; and any #zXn
semistochastic matrix P=]| p;j” (.e., p;;=0 and D %_; pim=0 or 1),
let

2 &) = — axi(t) + B i x(t — m)yei(®) + Ci(d),
3) Yi(t) = pinz(?) I: il p,-mz,,,,(t)]— )
and
4) gn()) = [—uzn() + Bt — 7)2(D]0(p1),
for all 4, j, k=1, 2, - - -, n, where
0(p) =1 ifp>0,
0 ifp=o0.

In order that our theorems hold, the initial data must always be non-
95
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negative, We also require it to be continuous and for convenience sup-
pose that 2;(0) >0 iff p4>0.

2. Positivity and linear averages.

THEOREM 1. With initial data chosen as above in [—7, 0], the solution
of (2)—(4) exists and is unique, continuously differentiable, and non-
negative in (0, «). If moreaver either x; or 2; has positive initial data,
then it is always positive.

The positivity of solutions implies a property of (2)-(4) that is
used repeatedly in proving our results. Define the sets S(r) and T'(r)

inductively by S(r) = {&: X iese¢—1) p1s = 1} and

T(f)={k: E ph;=0}’ r=1,---,k,
€8 (r—1)

where S(0) = {1, 2,000, n} and k is the least integer such that

either S(k) =& or S(k)=S(k—1). We also let ¥ = Y .csnx; and

C= Z.’es«)ce-

CorOLLARY 1. The wectors V=9, .., x®D) and W
=(CO, . .., C&D) obey a linear equation

5) V() = —aV(t) +B8DV(E— 7) + W(1)
iff S IJT(r)=S0),r=1,2, -, k, where

010 - - )

0 010

oo |

00 01

00 01
when S(k)=S(k—1), and

0 1 0

0 01

00 - -0 1
LOO"OOJ

when S(k) = . If moreover P is stochastic (i.e., 2 -y pm=1for all 1),
then (5) reduces to




1968) GLOBAL RATIO LIMIT THEOREMS. 1 97
FO®) = —ax®(f) + pxO(t — 1) + CO().

3. A graph theoretic interpretation. The limiting behavior of (2)-
(4) depends crucially on its matrix P. Every P can be geometri-
cally realized as a directed probabilistic graph with vertices V
= {v.-:i=1,2, <. ,n} and directed edges E = {e,-k:j,k=1,2, <. ,n},
where the weight p; is assigned to the edge ej;. If moreover x;(¢) is
interpreted as the state of a process at v;, and ¥;;:(f) is interpreted as
the state of a process at the arrowhead of e, then (2)~(4) can readily
be thought of as a flow of the quantities x;(f) over the probabilistic
graph P with flow velocity v=1/7. The coefficients ¥:(¢) in (2) con-
trol the size of the Bx;(t—7) flow from v, along e;; which eventually
reaches v; by cross-correlating past Bxi;(w—7) and x;(w) values,
w& [—7, 7], with an exponential weighting factor e~*(— ag in
%¢(¢) in (4), and comparing this weighted cross-correlation in (3) with
all other cross-correlations 2, (¢) corresponding to any edge leading
from v, m=1, 2, - - -, n. (See [1] for further details.)

Alternatively, for every $t=0, a probabilistic graph G(f) with
weight y;:(¢) assigned to edge ej;, can be defined. Then (2)—(4) provides
a mechanism for continuously deforming one graph G(f) into an-
other graph G(t1), t1>¢. A basic problem when C=0 is to study the
influence of the “geometry” P on the “limiting transition probabil-
ities” G(»)=lim;., G(¢) when these exist.

4. Outstars. In this note, we annouce a result for the case
1 1 1

o 8.

0
P= n—1 n—1 n—1

0

Then only edges e, j=2, 3, - - -, n, have positive weights, which
equal 1/(n—1). This system is therefore called an outstar with source
vertex vy, sinks v;, j=2, - - -, n, and border B= {v;: j=2, - - -, n}

Our main result describes a sequence GV, G®, - . ., G™, . . . of
outstars with identical but otherwise arbitrary positive and continu-
ous initial data in [—7, 0], whose inputs are formed from the follow-
ing ingredients:

(a) let {0,-: j=2,--+, n} be a fixed but arbitrary probability
distribution;

(b) let f and g be bounded, nonnegative, and continuous functions
in [0, ») for which there exist positive constants # and T such that

¢
f eet-0f(w)dw = b, tZ T,
o
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and
¢
f eet—g(w)dw = k, t= To;
0

(c) let Uy(N) and U(N) be any positive and monotone increasing
functions of N=1 such that

lim UyN) = imUWV) = «;
Now

Now

(d) for every N1, let hy(¢) be any nonnegative and continuous
function that is positive only in (U(N), «); and
(e) let

x(w) =0 ifw>0,
=1 ifws0.

The input functions C of G™ are defined in terms of (a)-(e) by
an

(6) () = fOxt — Us()) + hn()
and
Q) CV() = bgDx(t — UN), j=2,--+,m

Letting the functions of G® be denoted by superscripts “(V)”
(e.g., 35 is written "), and defining the ratios XM =M/ 32 M
forevery N=1andj=2, - - -, n, we can state the following theorem.

THEOREM 2. Let GV, G®, . . ., G, . . . have identical but other-
wise arbitrary positive and continuous initial data, and any inputs
chosen as in (6) and (7). Then

(A) for every N1, the limits limy. X{V(t) and lim,.. ()
exist and are equal, j=2, + - -, n;

(B) for every N=1 and all t= UN), XM(t) and ¥y () are mono-
tonic in opposite senses, and

)

lim X;"(U(N) = lim yig (U(N)) = 6,

N—®»
j=2, -+ -, n. In particular, by (A) and (B),

lim lim X; () = lim limyy () =6, j=2 -+,
N=w t—n N—cw t—ow

(C) for every N1 and j=2,---, n, the functions 33, F

=y§f’-—X§"’, and G§”’=X}"’ —0; change sign at most once and not at
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all if FMO)GM(0)=0. Moreover, FMO)GM(0)>0 implies
FM@6GM () >0 for all t20.

(C) shows in particular that the functions y{)’ are quite insensitive
to fluctuations in the functions f and g, since 3{)’ fluctuates no more
than once.

In prediction and learning theoretic applications, the following
situations are of particular interest.

COROLLARY 2. If XM (0) =y (0) and 8;=8,, j=2, -+ -, n, then
¥M increases monotonically to 1 and ¥y M decreases monotonically to
zero, k=3, -+ -, m.

COROLLARY 3. The theorem is true if

C(N) N-—-1
1 () = 20 Tt — k(w + W) + Ja(t — A(V))
k=0
and
o) N-1
Ci (&) = 6; 2 Jo(t — w — k(w + W),

ku=0

j=2,+:+,n, where J;is a continuous and nonnegative funciion that is
positive in an interval of the form (0, \;), 1=1, 2; w and W are nonnega-
tive numbers whose sum is positive; and

AN) > w4+ (V- 1)(w+ W) + s

When also 0;=25;,, the G® of Corollary 3 can be interpreted as a
machine which is exposed to N periodic repetitions of a sequence 4B
of events, followed by a presentation of 4 alone to test if the machine
can predict B in reply on the basis of its past experience [1]. The
theorem can be interpreted as saying that the machine eventually
“learns” the sequence 4B if it is given sufficient practice. [1] dis-
cusses several other properties of this “learning” process, and [2]
will provide a detailed exposition.
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