GLOBAL RATIO LIMIT THEOREMS FOR SOME NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS. I

BY STEPHEN GROSSBERG

Communicated by Norman Levinson, August 31, 1967

1. Introduction. We study some systems of nonlinear functional-differential equations of the form

$$\dot{X}(t) = AX(t) + B(X_t)X(t-\tau) + C(t), \quad t \ge 0,$$

where $X = (x_1, \dots, x_n)$ is nonnegative, $B(X_t) = \|B_{ij}(t)\|$ is a matrix of nonlinear functionals of X(w) evaluated at all past times $w \in [-\tau, t]$, and $C = (C_1, \dots, C_n)$ is a known nonnegative and continuous input function. For appropriate A, B, and C, these systems can be interpreted as a nonstationary prediction theory whose goal is to discuss the prediction of individual events, in a fixed order, and at prescribed times, or alternatively as a mathematical learning theory. This interpretation is discussed in a special case in [1]. The systems can also be interpreted as cross-correlated flows on networks, or as deformations of probabilistic graphs.

The mathematical content of these interpretations is contained in assertions of the following kind: given arbitrary positive and continuous initial data along with a suitable input C, the ratios $y_{jk}(t) = B_{kj}(t) \left(\sum_{m=1}^{n} B_{km}(t) \right)^{-1}$ have limits as $t \to \infty$.

Our systems are defined in the following way. Given any positive integer n; any real numbers α , u, $\beta > 0$, and $\tau \ge 0$; and any $n \times n$ semistochastic matrix $P = ||p_{ij}||$ (i.e., $p_{ij} \ge 0$ and $\sum_{m=1}^{n} p_{im} = 0$ or 1), let

(2)
$$\dot{x}_{i}(t) = -\alpha x_{i}(t) + \beta \sum_{k=1}^{n} x_{k}(t-\tau) y_{k}(t) + C_{i}(t),$$

(3)
$$y_{jk}(t) = p_{jk}z_{jk}(t) \left[\sum_{m=1}^{n} p_{jm}z_{jm}(t)\right]^{-1},$$

and

(4)
$$\dot{z}_{jk}(t) = \left[-uz_{jk}(t) + \beta x_j(t-\tau)x_k(t)\right]\theta(p_{jk}),$$

for all $i, j, k = 1, 2, \dots, n$, where

$$\theta(p) = 1 \quad \text{if } p > 0,$$

= 0 \quad \text{if } p \leq 0.

In order that our theorems hold, the initial data must always be non-

negative. We also require it to be continuous and for convenience suppose that $z_{jk}(0) > 0$ iff $p_{jk} > 0$.

2. Positivity and linear averages.

THEOREM 1. With initial data chosen as above in $[-\tau, 0]$, the solution of (2)–(4) exists and is unique, continuously differentiable, and nonnegative in $(0, \infty)$. If moreover either x_i or z_{jk} has positive initial data, then it is always positive.

The positivity of solutions implies a property of (2)-(4) that is used repeatedly in proving our results. Define the sets S(r) and T(r) inductively by $S(r) = \{k: \sum_{i \in S(r-1)} p_{ki} = 1\}$ and

$$T(r) = \left\{k: \sum_{i \in S(r-1)} p_{ki} = 0\right\}, \quad r = 1, \dots, k,$$

where $S(0) = \{1, 2, \dots, n\}$ and k is the least integer such that either $S(k) = \emptyset$ or S(k) = S(k-1). We also let $x^{(r)} = \sum_{i \in S(r)} x_i$ and $C^{(r)} = \sum_{i \in S(r)} C_i$.

COROLLARY 1. The vectors $V = (x^{(0)}, \dots, x^{(k-1)})$ and $W = (C^{(0)}, \dots, C^{(k-1)})$ obey a linear equation

(5)
$$\dot{V}(t) = -\alpha V(t) + \beta DV(t-\tau) + W(t)$$

iff $S(r) \cup T(r) = S(0)$, $r = 1, 2, \dots, k$, where

$$D = \begin{pmatrix} 0 & 1 & 0 & \cdot & \cdot & \cdot \\ 0 & 0 & 1 & 0 & \cdot & \cdot \\ \vdots & & & & & \\ 0 & 0 & \cdot & \cdot & 0 & 1 \\ 0 & 0 & \cdot & \cdot & 0 & 1 \end{pmatrix}$$

when S(k) = S(k-1), and

$$D = \begin{pmatrix} 0 & 1 & 0 & \cdot & \cdot & \cdot \\ 0 & 0 & 1 & \cdot & \cdot & \cdot \\ \vdots & & & & & \\ 0 & 0 & \cdot & \cdot & 0 & 1 \\ 0 & 0 & \cdot & \cdot & 0 & 0 \end{pmatrix}$$

when $S(k) = \emptyset$. If moreover P is stochastic (i.e., $\sum_{m=1}^{n} p_{4m} = 1$ for all i), then (5) reduces to

$$\dot{x}^{(0)}(t) = -\alpha x^{(0)}(t) + \beta x^{(0)}(t-\tau) + C^{(0)}(t).$$

3. A graph theoretic interpretation. The limiting behavior of (2)–(4) depends crucially on its matrix P. Every P can be geometrically realized as a directed probabilistic graph with vertices $V = \{v_i : i=1,2,\cdots,n\}$ and directed edges $E = \{e_{jk}: j, k=1,2,\cdots,n\}$, where the weight p_{jk} is assigned to the edge e_{jk} . If moreover $x_i(t)$ is interpreted as the state of a process at v_i , and $v_{jk}(t)$ is interpreted as the state of a process at the arrowhead of e_{jk} , then (2)–(4) can readily be thought of as a flow of the quantities $x_i(t)$ over the probabilistic graph P with flow velocity $v=1/\tau$. The coefficients $y_{ki}(t)$ in (2) control the size of the $\beta x_k(t-\tau)$ flow from v_k along e_{ki} which eventually reaches v_i by cross-correlating past $\beta x_k(w-\tau)$ and $x_i(w)$ values, $w \in [-\tau, \tau]$, with an exponential weighting factor $e^{-u(t-w)}$ as in $z_{ki}(t)$ in (4), and comparing this weighted cross-correlation in (3) with all other cross-correlations $z_{km}(t)$ corresponding to any edge leading from v_k , m=1, 2, \cdots , n. (See [1] for further details.)

Alternatively, for every $t \ge 0$, a probabilistic graph G(t) with weight $y_{jk}(t)$ assigned to edge e_{jk} can be defined. Then (2)-(4) provides a mechanism for continuously deforming one graph $G(t_0)$ into another graph $G(t_1)$, $t_1 > t_0$. A basic problem when $C \equiv 0$ is to study the influence of the "geometry" P on the "limiting transition probabilities" $G(\infty) = \lim_{t\to\infty} G(t)$ when these exist.

4. Outstars. In this note, we annouce a result for the case

$$P = \begin{bmatrix} 0 & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ & 0 & & \end{bmatrix}.$$

Then only edges e_{1j} , j=2, 3, \cdots , n, have positive weights, which equal 1/(n-1). This system is therefore called an *outstar* with source vertex v_1 , $sinks\ v_j$, j=2, \cdots , n, and $border\ B = \{v_j: j=2, \cdots, n\}$.

Our main result describes a sequence $G^{(1)}$, $G^{(2)}$, \cdots , $G^{(N)}$, \cdots of outstars with identical but otherwise arbitrary positive and continuous initial data in $[-\tau, 0]$, whose inputs are formed from the following ingredients:

- (a) let $\{\theta_j: j=2, \dots, n\}$ be a fixed but arbitrary probability distribution;
- (b) let f and g be bounded, nonnegative, and continuous functions in $[0, \infty)$ for which there exist positive constants k and T_0 such that

$$\int_0^t e^{-\alpha(t-w)} f(w) dw \ge k, \quad t \ge T_0,$$

and

$$\int_0^t e^{-\alpha(t-w)}g(w)dw \ge k, \quad t \ge T_0;$$

(c) let $U_1(N)$ and U(N) be any positive and monotone increasing functions of $N \ge 1$ such that

$$\lim_{N\to\infty} U_1(N) = \lim_{N\to\infty} U(N) = \infty;$$

- (d) for every $N \ge 1$, let $h_N(t)$ be any nonnegative and continuous function that is positive only in $(U(N), \infty)$; and
 - (e) let

$$\chi(w) = 0 \quad \text{if } w > 0,$$
$$= 1 \quad \text{if } w \le 0.$$

The input functions $C_k^{(N)}$ of $G^{(N)}$ are defined in terms of (a)-(e) by

(6)
$$C_1^{(N)}(t) = f(t)\chi(t - U_1(N)) + h_N(t)$$

and

(7)
$$C_j^{(N)}(t) = \theta_j g(t) \chi(t - U(N)), \quad j = 2, \cdots, n.$$

Letting the functions of $G^{(N)}$ be denoted by superscripts "(N)" (e.g., y_{1j} is written $y_{1j}^{(N)}$), and defining the ratios $X_j^{(N)} = x_j^{(N)} / \sum_{k=2}^n x_k^{(N)}$ for every $N \ge 1$ and $j = 2, \dots, n$, we can state the following theorem.

THEOREM 2. Let $G^{(1)}$, $G^{(2)}$, \cdots , $G^{(N)}$, \cdots have identical but otherwise arbitrary positive and continuous initial data, and any inputs chosen as in (6) and (7). Then

- (A) for every $N \ge 1$, the limits $\lim_{t\to\infty} X_j^{(N)}(t)$ and $\lim_{t\to\infty} y_{1j}^{(N)}(t)$ exist and are equal, $j=2, \cdots, n$;
- (B) for every $N \ge 1$ and all $t \ge U(N)$, $X_j^{(N)}(t)$ and $y_{ij}^{(N)}(t)$ are monotonic in opposite senses, and

$$\lim_{N\to\infty} X_j^{(N)}(U(N)) = \lim_{N\to\infty} y_{1j}^{(N)}(U(N)) = \theta_j,$$

 $j=2, \dots, n$. In particular, by (A) and (B),

$$\lim_{N\to\infty} \lim_{t\to\infty} X_j^{(N)}(t) = \lim_{N\to\infty} \lim_{t\to\infty} y_{1j}^{(N)}(t) = \theta_j, \quad j=2 \cdots, n.$$

(C) for every $N \ge 1$ and $j = 2, \dots, n$, the functions $\dot{y}_{1j}^{(N)}$, $F_j^{(N)} = y_{1j}^{(N)} - X_j^{(N)}$, and $G_j^{(N)} = X_j^{(N)} - \theta_j$ change sign at most once and not at

all if $F_{j}^{(N)}(0)G_{j}^{(N)}(0) \ge 0$. Moreover, $F_{j}^{(N)}(0)G_{j}^{(N)}(0) > 0$ implies $F_{j}^{(N)}(t)G_{j}^{(N)}(t) > 0$ for all $t \ge 0$.

(C) shows in particular that the functions $y_{ij}^{(N)}$ are quite insensitive to fluctuations in the functions f and g, since $y_{ij}^{(N)}$ fluctuates no more than once.

In prediction and learning theoretic applications, the following situations are of particular interest.

COROLLARY 2. If $X_j^{(N)}(0) = y_{ij}^{(N)}(0)$ and $\theta_j = \delta_{j2}$, $j = 2, \dots, n$, then $y_{i2}^{(N)}$ increases monotonically to 1 and $y_{ik}^{(N)}$ decreases monotonically to zero, $k = 3, \dots, n$.

COROLLARY 3. The theorem is true if

$$C_1^{(N)}(t) = \sum_{k=0}^{N-1} J_1(t - k(w + W)) + J_1(t - \Lambda(N))$$

and

$$C_j^{(N)}(t) = \theta_j \sum_{k=0}^{N-1} J_2(t-w-k(w+W)),$$

 $j=2, \dots, n$, where J_i is a continuous and nonnegative function that is positive in an interval of the form $(0, \lambda_i)$, i=1, 2; w and W are nonnegative numbers whose sum is positive; and

$$\Lambda(N) > w + (N-1)(w+W) + \lambda_2.$$

When also $\theta_j = \delta_{j2}$, the $G^{(N)}$ of Corollary 3 can be interpreted as a machine which is exposed to N periodic repetitions of a sequence AB of events, followed by a presentation of A alone to test if the machine can predict B in reply on the basis of its past experience [1]. The theorem can be interpreted as saying that the machine eventually "learns" the sequence AB if it is given sufficient practice. [1] discusses several other properties of this "learning" process, and [2] will provide a detailed exposition.

REFERENCES

- 1. S. Grossberg, Nonlinear difference-differential equations in prediction and learning theory, Proc. Nat. Acad. Sci. 58 (1967), 1329-1335.
- 2. —, A prediction theory for some nonlinear functional-differential equations. I, II, J. Math. Anal. Appl. (to appear).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY