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In this paper all spaces, including compactifications, are separable
metrizable. Recall the following definitions. A space X is strongly
countable dimensional if X is a countable union of closed finite-
dimensional subsets. X is a G; space if X is a Gs-set in each space in
which it is topologically embedded. A space Y is a pseudo-polytope if
Y=2,UZ,U - . ., where each Z; is a simplex, Z,/MN\Z; is either empty
or a face of both Z; and Z;, and diam 2;—0 as t— ». The term map
always denotes a continuous function. Other notation is as in [3]
and [8].

In [5] Lelek proved that every Gs-space X has a compactification
dX such that dX\X is a pseudo-polytope. He then raised the question
of whether every strongly countable dimensional G;s space X has a
strongly countable dimensional compactification. This paper an-
swers that question in the affirmative. We first state some prelim-
inary propositions.

PRroPOSITION 1. Let MC X with dim M<n,and let { Us|i=1,2, - - - }
be a sequence of sets open in X and covering M. Then there is a sequence

{Vi|i=1, 2, -} of sets open in X and covering M such that
ord V.-[i=1, 2, - }§n+1 and such that Vimi1+iC Ui for
k=0,1,2,.-- and j=1,2, .-, n+1.

Proor. The proof involves only a slight extension of the argument
on page 54 of [2].

PROPOSITION 2. Let G be an open subset of a totally bounded space
Y, and let My, M,, - - -, M, be relatively closed subsets of G with
dim M;=m;< » for i=1,2, - - -, r. Let €>0. Then there is a collec-
tion {Gi|i=1,2, - - - } such that G=Uz, G; and

(1) Each G; is open in Y.

(i) {Gi|i=1,2, -} is star-finite.

(iii) G:CG for i=1, 2, - -.

1 This paper was written in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.
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(iv) diam G;<e for 1=1, 2, - - - and diam G;—0 as i— .
(v) ord { G| Gs meets My\IM\J - - - UM} Smy+1+4me+1 + - - -
+mi+1 for k=1,2, .-, r.

Proor. We sketch the proof of this proposition. From page 114 of

[4] we get a collection {G,-’ |i=1, 2, - - - } satisfying (i)-(iv). Open
covers satisfying (i)—(iv) and (v) for k=1, 2, - - -, r are now defined
inductively. By Proposition 1 there is a sequence { V.~| i=1,2, -}
of open sets covering M; such that ord{ V;|i=1, 2, - - - } Sm+1
and Vimi1y+;CGiyy for £=0,1,2, - - - and j=1,2, -+ -, m+1. The
collection { Vi|i=1, 2, - - - }U{G!\Mi|i=1, 2, - - - } then satisfies
(1)-(@v) and (v) for k=1.

Suppose {G,-’ ]i=1, 2, } covers G, satisfies (i)~(iv) and (v) for
eachk=1,2, .- - ,n Let C=MUM,\J - . . UM,. By Proposition 1
there is a sequence { Vili= 1,2, } of open sets covering M,1\C
such that ord{Vi|i=1, 2, -+ } S#map+1 and Viwin+sCGh\C
for k=0, 1, 2,-.+ and j=1, 2,.--, muu+1. The collection

{GINCUMw)|i=1, 2,---}U{WVi|i=1, 2,...}U{G!|G!
meets C } satisfies (i)—(iv) and (v) for each k=1, 2, - - -, n+1. This
completes the inductive step and the sketch of the proof.

We are now in a position to prove the first theorem.

THEOREM 1. Let C be a closed subset of a compact space Y, and let
My, My, - - -, M, be closed subsets of Y with dim M;=m;< « for
1=1, 2, - - -, r. Let €>0. Then there is an emap f: Y—I° such that
FIONFY\C) =&, f| C is a homeomorphism, f(Y\C) is a countable
polytope P, and dim f(M\C) Smi+1+ma+1+4+ - - - +m; for 1=1, 2,

«, 7. Further, P=2,\UZ,\J - - « where each Z; is a simplex and
diam 2,—0 as i— .

Proor. We may assume that YV CI“ and that the first coordinate of
each point of Y is zero. Let §={G;|i=1, 2, - - - } be the open cover
of Y\C given by Proposition 2 with diam G;<e/8 for ¢=1, 2, - - .
For each 7 such that G5 & pick a point g;&G;. Then pick points p;
with first coordinate greater than zero such that d(p;, g:)
<min {1/3, e/8} and such that {p;|i=1, 2, ¢ } is in general posi-
tion. Let IV be the collection of simplexes spanned by finite subsets

Dip Din * + +» i} where GiN\GiyN - - - NGy, % . The points

pili=1,2, .- } may be picked in such a way that N is a CW-
polytope, and certainly NNY=¢. Also, N=3,UZ,U - . . where
each Z; is a simplex and diam Z;—0 as i— . Define f': Y—I* by
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ifzx € C,

> i, T\G#

f'(x) = {— if x € C.
2. d(x, \G)

t=1

It is not hard to show that f’ is continuous, and that d(z, f'(z))
<e/4 for each z& Y. Triangulate N into simplexes of diameter less
than e/4. By a suitable induction, a map fi: f/(Y)NN—N may be
defined in such a way that f’(y) and fif’(y) are in the same simplexes
and fi(f'(Y)N\N) is a subpolytope P of N. The map f: Y—I« defined
by

{ 2&C,

fHff(x) z€ V\C

is then an emap such that f(C)Nf(Y\C) =, f| C is a homeomor-
phism, and f(Y\C) is the desired polytope P. Finally, let y&E M,\C.
By the conditions on the cover G,y is in at most my41+ms+14 - - -
+m;+1 elements of G. Thus f’(y), and hence also fif’(y), is in a
simplex of dimension not greater than my-+1+4me+1+4+ - - - +m,.
Since P is a countable polytope, dim f(M\C)Smi+1+me+41
-l- LR +m,-. Q.E.D.

Theorem 1 now enables us to prove our main theorem.

f(z) =

THEOREM 2. Let X be a strongly countable dimensional Gs space. Then
there is a strongly countable dimensional compactification dX of X such
that dX\X 1is a pseudo-polytope.

Proor. Let X=F1UF2U -+ - where F; is closed and dim F;

=m;< o for i=1, 2, . By a result of Hurewicz [1] there is a
compactification ¢X of X such that dim FX=m; for i=1, 2,
Let n;=my+1+my+1+ - -+ +m;. Since X is a G; space, cX\X
=YV,UY,U ... where each Y; is compact and Y,CY;u for
2=1,2, - ..Let Yo=(. By Theorem 1 there is a 1/7-map f;: YV,—I
such that f(Y,_l)f\f,(Y\Y,-l) o, f1! Y;_1 is a homeomorphism,
fi(Y\ Yy is a countable polytope P, and dim fi(F&XMN(V\Yi1))
<n for k=1,2, ..., 4.

Decompose ¢X into sets fi1(z) for 2&f,(Y;\Y:-1) and into indi-
vidual points x & X. Let the quotient space be dX and let f: cX—dX
be the quotient map. It may be shown that the decomposition of ¢X
is upper semicontinuous, so that f is a closed map. Hence dX is a
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compactification of X. Further, it is easily shown that there is a uni-
formly continuous homeomorphism g;: fi( ¥\ Vi—1) =f(Y:\ Yi—1). Since
fi(Y\Y;.1) is a countable polytope for :=1, 2, -, dX\X is a
pseudo-polytope.

To show that dX is strongly countable dimensional it is enough to
show that F2X is strongly countable dimensional for z—l 2,
F 1x a positive integer k. Since f is a closed map, FiX=f(FX ) Fk

U FFEN(Y\Yiy). Also, f(FEENY,1)C f(cX\X) dX\X,

Y0) f(Fix NY;,1) is strongly countable dimensional. Let C,
=Up, f('F"xf\(Y,\ Y;2)) for n=k, k+1, - - - and let Dy=U, C;.
Each C;is closed in D;. Further, dim Ck—-dlm f(Fs f\(Yk\ V1)) Smy.
Suppose dim C;=m. Then Cip1= C;Uf(FEXN(Y:41\Y5)), C: is closed
in Ciy1, and dim f(FEN(Y:41\Y:)) £ m, so dim Cip1 S my. Therefore
dim Dy=mi, and dim D,UF,Sn;+mi+1. Dy\UF, is open in FX,
so by Proposition 2 D\JF,=U>, G, where GXCD,\JF, for
i=1,2, - - - . Hence dim G&¥ <m;+m+1, and F is strongly count-
able dimensional. Q.E.D.

Sklyarenko gives an example in [9] which shows that being a G;
space is a necessary hypothesis in Theorem 2.
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