COMPACTIFICATION OF STRONGLY COUNTABLE DIMENSIONAL SPACES¹

BY ARLO W. SCHURLE

Communicated by R. H. Bing, May 22, 1967

In this paper all spaces, including compactifications, are separable metrizable. Recall the following definitions. A space X is strongly countable dimensional if X is a countable union of closed finite-dimensional subsets. X is a G_{δ} space if X is a G_{δ} -set in each space in which it is topologically embedded. A space Y is a pseudo-polytope if $Y = \Sigma_1 \cup \Sigma_2 \cup \cdots$, where each Σ_i is a simplex, $\Sigma_i \cap \Sigma_j$ is either empty or a face of both Σ_i and Σ_j , and diam $\Sigma_i \to 0$ as $i \to \infty$. The term map always denotes a continuous function. Other notation is as in [3] and [8].

In [5] Lelek proved that every G_{δ} -space X has a compactification dX such that $dX \setminus X$ is a pseudo-polytope. He then raised the question of whether every strongly countable dimensional G_{δ} space X has a strongly countable dimensional compactification. This paper answers that question in the affirmative. We first state some preliminary propositions.

PROPOSITION 1. Let $M \subset X$ with dim $M \leq n$, and let $\{U_i | i=1, 2, \cdots\}$ be a sequence of sets open in X and covering M. Then there is a sequence $\{V_i | i=1, 2, \cdots\}$ of sets open in X and covering M such that ord $\{V_i | i=1, 2, \cdots\} \leq n+1$ and such that $V_{k(n+1)+j} \subset U_{k+1}$ for $k=0, 1, 2, \cdots$ and $j=1, 2, \cdots, n+1$.

PROOF. The proof involves only a slight extension of the argument on page 54 of [2].

PROPOSITION 2. Let G be an open subset of a totally bounded space Y, and let M_1, M_2, \dots, M_r be relatively closed subsets of G with dim $M_i = m_i < \infty$ for $i = 1, 2, \dots, r$. Let $\epsilon > 0$. Then there is a collection $\{G_i | i = 1, 2, \dots\}$ such that $G = \bigcup_{i=1}^{\infty} G_i$ and

- (i) Each G_i is open in Y.
- (ii) $\{G_i | i=1, 2, \cdots \}$ is star-finite.
- (iii) $\overline{G}_i \subset G$ for $i=1, 2, \cdots$.

¹ This paper was written in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

(iv) diam $G_i < \epsilon$ for $i = 1, 2, \cdots$ and diam $G_i \rightarrow 0$ as $i \rightarrow \infty$. (v) ord $\{G_i | G_i \text{ meets } M_1 \cup M_2 \cup \cdots \cup M_k\} \leq m_1 + 1 + m_2 + 1 + \cdots + m_k + 1 \text{ for } k = 1, 2, \cdots, r.$

PROOF. We sketch the proof of this proposition. From page 114 of [4] we get a collection $\{G_i' \mid i=1, 2, \cdots\}$ satisfying (i)-(iv). Open covers satisfying (i)-(iv) and (v) for $k=1, 2, \cdots, r$ are now defined inductively. By Proposition 1 there is a sequence $\{V_i \mid i=1, 2, \cdots\}$ of open sets covering M_1 such that ord $\{V_i \mid i=1, 2, \cdots\} \leq m_1+1$ and $V_{k(n+1)+j} \subset G'_{k+1}$ for $k=0, 1, 2, \cdots$ and $j=1, 2, \cdots, m_1+1$. The collection $\{V_i \mid i=1, 2, \cdots\} \cup \{G'_i \setminus M_1 \mid i=1, 2, \cdots\}$ then satisfies (i)-(iv) and (v) for k=1.

Suppose $\{G'_i \mid i=1, 2, \cdots\}$ covers G, satisfies (i)-(iv) and (v) for each $k=1, 2, \cdots, n$. Let $C=M_1 \cup M_2 \cup \cdots \cup M_n$. By Proposition 1 there is a sequence $\{V_i \mid i=1, 2, \cdots\}$ of open sets covering $M_{n+1} \setminus C$ such that ord $\{V_i \mid i=1, 2, \cdots\} \le m_{n+1}+1$ and $V_{k(n+1)+j} \subset G'_{k+1} \setminus C$ for $k=0, 1, 2, \cdots$ and $j=1, 2, \cdots, m_{n+1}+1$. The collection $\{G'_i \setminus (C \cup M_{n+1}) \mid i=1, 2, \cdots\} \cup \{V_i \mid i=1, 2, \cdots\} \cup \{G'_i \mid G'_i \text{ meets } C\}$ satisfies (i)-(iv) and (v) for each $k=1, 2, \cdots, n+1$. This completes the inductive step and the sketch of the proof.

We are now in a position to prove the first theorem.

THEOREM 1. Let C be a closed subset of a compact space Y, and let M_1, M_2, \cdots, M_r be closed subsets of Y with dim $M_i = m_i < \infty$ for $i=1, 2, \cdots, r$. Let $\epsilon > 0$. Then there is an ϵ -map $f \colon Y \to I^{\omega}$ such that $f(C) \cap f(Y \setminus C) = \emptyset$, $f \mid C$ is a homeomorphism, $f(Y \setminus C)$ is a countable polytope P, and dim $f(M_i \setminus C) \leq m_1 + 1 + m_2 + 1 + \cdots + m_i$ for $i=1, 2, \cdots, r$. Further, $P = \Sigma_1 \cup \Sigma_2 \cup \cdots$ where each Σ_i is a simplex and diam $\Sigma_i \to 0$ as $i \to \infty$.

PROOF. We may assume that $Y \subset I^{\omega}$ and that the first coordinate of each point of Y is zero. Let $\mathcal{G} = \{G_i | i=1, 2, \cdots \}$ be the open cover of $Y \setminus C$ given by Proposition 2 with diam $G_i < \epsilon/8$ for $i=1, 2, \cdots$. For each i such that $G_i \neq \emptyset$ pick a point $g_i \in G_i$. Then pick points p_i with first coordinate greater than zero such that $d(p_i, g_i) < \min\{1/i, \epsilon/8\}$ and such that $\{p_i | i=1, 2, \cdots \}$ is in general position. Let N be the collection of simplexes spanned by finite subsets $\{p_{i_0}, p_{i_1}, \cdots, p_{i_n}\}$ where $G_{i_0} \cap G_{i_1} \cap \cdots \cap G_{i_n} \neq \emptyset$. The points $\{p_i | i=1, 2, \cdots \}$ may be picked in such a way that N is a CW-polytope, and certainly $N \cap Y = \emptyset$. Also, $N = \Sigma_1 \cup \Sigma_2 \cup \cdots$ where each Σ_i is a simplex and diam $\Sigma_i \rightarrow 0$ as $i \rightarrow \infty$. Define $f' : Y \rightarrow I^{\omega}$ by

$$f'(x) = \begin{cases} \sum_{i=1}^{\infty} d(x, Y \setminus G_i) p_i \\ \sum_{i=1}^{\infty} d(x, Y \setminus G_i) \end{cases} \text{ if } x \in C.$$

It is not hard to show that f' is continuous, and that $d(z, f'(z)) < \epsilon/4$ for each $z \in Y$. Triangulate N into simplexes of diameter less than $\epsilon/4$. By a suitable induction, a map $f_1: f'(Y) \cap N \to N$ may be defined in such a way that f'(y) and $f_1f'(y)$ are in the same simplexes and $f_1(f'(Y) \cap N)$ is a subpolytope P of N. The map $f: Y \to I^{\omega}$ defined by

$$f(z) = \begin{cases} z & z \in C, \\ f_1 f'(z) & z \in Y \setminus C \end{cases}$$

is then an ϵ -map such that $f(C) \cap f(Y \setminus C) = \emptyset$, $f \mid C$ is a homeomorphism, and $f(Y \setminus C)$ is the desired polytope P. Finally, let $y \in M_i \setminus C$. By the conditions on the cover \mathcal{G} , y is in at most $m_1 + 1 + m_2 + 1 + \cdots + m_i + 1$ elements of \mathcal{G} . Thus f'(y), and hence also $f_1 f'(y)$, is in a simplex of dimension not greater than $m_1 + 1 + m_2 + 1 + \cdots + m_i$. Since P is a countable polytope, dim $f(M_i \setminus C) \leq m_1 + 1 + m_2 + 1 + \cdots + m_i$. Q.E.D.

Theorem 1 now enables us to prove our main theorem.

THEOREM 2. Let X be a strongly countable dimensional G_{δ} space. Then there is a strongly countable dimensional compactification dX of X such that $dX\backslash X$ is a pseudo-polytope.

PROOF. Let $X = F_1 \cup F_2 \cup \cdots$ where F_i is closed and dim $F_i = m_i < \infty$ for $i = 1, 2, \cdots$. By a result of Hurewicz [1] there is a compactification cX of X such that dim $\overline{F}_i^{cX} = m_i$ for $i = 1, 2, \cdots$. Let $n_i = m_1 + 1 + m_2 + 1 + \cdots + m_i$. Since X is a G_δ space, $cX \setminus X = Y_1 \cup Y_2 \cup \cdots$ where each Y_i is compact and $Y_i \subset Y_{i+1}$ for $i = 1, 2, \cdots$. Let $Y_0 = \emptyset$. By Theorem 1 there is a 1/i-map $f_i : Y_i \rightarrow I^\omega$ such that $f_i(Y_{i-1}) \cap f_i(Y_i \setminus Y_{i-1}) = \emptyset$, $f_i \mid Y_{i-1}$ is a homeomorphism, $f_i(Y_i \setminus Y_{i-1})$ is a countable polytope P, and dim $f_i(\overline{F}_k^{cX} \cap (Y_i \setminus Y_{i-1})) \leq n_k$ for $k = 1, 2, \cdots, i$.

Decompose cX into sets $f_i^{-1}(z)$ for $z \in f_i(Y_i \setminus Y_{i-1})$ and into individual points $x \in X$. Let the quotient space be dX and let $f: cX \to dX$ be the quotient map. It may be shown that the decomposition of cX is upper semicontinuous, so that f is a closed map. Hence dX is a

compactification of X. Further, it is easily shown that there is a uniformly continuous homeomorphism $g_i: f_i(Y_i \setminus Y_{i-1}) \to f(Y_i \setminus Y_{i-1})$. Since $f_i(Y_i \setminus Y_{i-1})$ is a countable polytope for $i = 1, 2, \dots, dX \setminus X$ is a pseudo-polytope.

To show that dX is strongly countable dimensional it is enough to show that \overline{F}_i^{dX} is strongly countable dimensional for $i=1, 2, \cdots$. Fix a positive integer k. Since f is a closed map, $\overline{F}_k^{dX} = f(\overline{F}_k^{cX}) = F_k \cup \bigcup_{i=1}^{\infty} f(\overline{F}_k^{cX} \cap (Y_i \setminus Y_{i-1}))$. Also, $f(\overline{F}_k^{cX} \cap Y_{k-1}) \subset f(cX \setminus X) = dX \setminus X$, so $f(\overline{F}_k^{cX} \cap Y_{k-1})$ is strongly countable dimensional. Let $C_n = \bigcup_{j=k}^n f(\overline{F}_k^{cX} \cap (Y_j \setminus Y_{j-1}))$ for $n=k, k+1, \cdots$ and let $D_k = \bigcup_{j=k}^{\infty} C_j$. Each C_j is closed in D_k . Further, dim $C_k = \dim f(\overline{F}_k^{cX} \cap (Y_k \setminus Y_{k-1})) \leq n_k$. Suppose dim $C_i \leq n_k$. Then $C_{i+1} = C_i \cup f(\overline{F}_k^{cX} \cap (Y_{i+1} \setminus Y_i))$, C_i is closed in C_{i+1} , and dim $f(\overline{F}_k^{cX} \cap (Y_{i+1} \setminus Y_i)) \leq n_k$, so the condition $C_i \leq n_k$ and dim $C_i \leq n_k$ and $C_i \leq n_k$

Sklyarenko gives an example in [9] which shows that being a G_{δ} space is a necessary hypothesis in Theorem 2.

BIBLIOGRAPHY

- 1. W. Hurewicz, Über Einbettung separabler Räume in gleichdimensionale kompakte Räume, Monatshefte für Mathematik und Physik 37 (1930), 199-208.
- 2. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941.
 - 3. J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1955.
 - 4. Casimir Kuratowski, Topologie. I, 3rd ed., Monogr. Mat. Warsaw, 1952.
- 5. A. Lelek, On dimension of remainders in compact extensions, Soviet Math. Dokl. 6 (1965), 136-140.
- 6. K. Menger, Über umfassendste n-dimensionale Mengen, Proc. Ned. Akad. Wetenschap. 29 (1926), 1125-1128.
- 7. J. Nagata, On the countable sum of zero-dimensional metric spaces, Fund. Math. 48 (1960), 1-14.
 - 8. —, Modern dimension theory, Wiley, New York, 1965.
- 9. E. G. Sklyarenko, On dimensional properties of infinite-dimensional spaces, Amer. Math. Soc. Translations (2) 21 (1962), 35-50.

University of Kansas