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1. Introduction. In 1934 it was pointed out by Thoralf Skolem 
[23] that there exist proper extensions of the natural number system 
which have, in some sense, "the same properties" as the natural 
numbers. As the title of his paper indicates, Skolem was interested 
only in showing that no axiomatic system specified in a formal lan­
guage (in his case the Lower Predicate Calculus) can characterize the 
natural numbers categorically ; and he did not concern himself further 
with the properties of the structures whose existence he had estab­
lished. In due course these and similar structures became known as 
nonstandard models of arithmetic and papers concerned with them, 
wholly or in part, including certain applications to other fields, ap­
peared in the literature (e.g. [7], [9], [ l l ] , [14], [15], [16], [17]). 
Beginning in the fall of 1960, the application of similar ideas to 
analysis led to a rapid development in which nonstandard models 
of arithmetic played an auxiliary but vital part. I t turned out that 
these ideas provide a firm foundation for the nonarchimedean ap­
proach to the Differential and Integral Calculus which predominated 
until the middle of the nineteenth century when it was discarded as 
unsound and replaced by the c, ô method of Weierstrass. Going 
beyond this area, which is particularly interesting from a historical 
point of view, the new method (which has come to be known as Non­
standard Analysis) can be presented in a form which is sufficiently 
general to make it applicable also to mathematical theories which do 
not involve any metric concept, e.g., to general topological spaces 
[18]. 

In the present paper we shall show how the experience gained with 
this more general approach can be used in order to throw new light 
also on arithmetic or more precisely, on the classical arithmetical 
theories which have grown out of elementary arithmetic, such as the 
theory of ideals, the theory of £-adic numbers, and class field theory. 
Thus we shall provide new foundations for infinite Galois theory and 
for the theory of idèles. Beyond that, we shall develop a theory of 
ideals for the case of infinite abelian extensions in class field theory. 
This is remarkable, for Chevalley introduced idèles [2] precisely in 
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order to deal with infinite extensions since, classically, the ideals in 
the ground field cannot cope with this case. 

§5 below is related to the theory of £-adic completions and of 
idèles in Dedekind rings which is developed in [17], [20]. 

I acknowledge with thanks several stimulating conversations with 
W. A. J. Luxemburg, A. M. MacBeath and O. Todd while participat­
ing in a program on Nonstandard Analysis sponsored by the Office of 
Naval Research a t the California Institute of Technology. Among 
others from whose knowledge I have benefited in connection with the 
problems considered here, I wish to mention particularly P. Roquette, 
E. G. Straus, and H. Zassenhaus. 

2. Enlargements and ultrapowers. In this section we give an in­
formal description of the framework which is required for our subse­
quent arguments. The reader may consult [18] for a formal develop­
ment. 

Let M be a mathematical structure of any kind and let R(x, y) 
be a binary relation of arbitrary type in AT. Thus, R may be a relation 
between individuals of M or between individuals and functions, or 
between sets and binary relations, etc. By t h e i r s / domain of R, DR, 
we mean the set of all entities (individuals, relations, functions, • • • ) 
a for which there exists a b such that R(a, b) holds (is satisfied) 
in M. We shall say that R is concurrent if, for every finite subset 
{#i, • • - , # » } of DR, n^l, there exists an entity b in M such that 
R(a\, b), R(a2, & ) , • • • , R(an, b) all hold in M. Now let M' be an 
extension of M. We shall say that the relation R(x, y) in I f is bounded 
in M' if there exists an entity bR in M' such that R(a, bR) holds in M' 
for all aÇ-Ds, i.e., for all elements of the first domain of R in M. bR 

will be called a bound for R. 
An extension *M of M is called an enlargement of M if all concur­

rent relations of M are bounded in *M and if, moreover, all state­
ments which hold in M hold also in *M in a sense which will now be 
explained. 

Let K be the set of all statements which hold in M. We may imag­
ine that these statements are expressed in a formal language L which 
includes symbols for all individuals of M, for all sets of M, and for 
all functions, relations, sets of relations, etc. of all (finite) types. In 
addition, L is supposed to include the usual connectives, | (not), 
V (or), A (and), D (if - • • then), and also variables and quantifiers 
(for all and there exists). Quantification is permitted with respect to 
entities of all types (e.g., "for all functions of two variables," "there 
exists a ternary relation between sets"). 
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To every entity (individual, function, relation, • • • ) R in M, there 
corresponds an entity *R in *M, which is denoted by the same symbol 
in L. A relation R holds between entities Si, • • • , Sn in M if and 
only if *R holds between *Si, • • • , *Sn in *M. On this basis, any 
statement X of K can be reinterpreted in *M where we assign their 
usual meaning to the connectives and to quantification with respect 
to individuals. However, when interpreting quantification with 
respect to entities of higher type in *M, we shall (in general) not refer 
to the totality of entities of the type in question but to a certain 
subclass of such entities called internal. Thus, the phrase which in 
M signifies "there exists a function of three variables" is to be inter­
preted in *ikf as "there exists an internal function of three variables," 
and, similarly, "for all binary relations in M" corresponds to "for all 
internal binary relations in *M." I t is in this sense that the statements 
of K are required to hold also in *M (for some fixed determination of 
the class of internal entities) where the bounds of concurrent relations 
introduced above also must be internal. 

I t is a simple consequence of the compactness theorem (finiteness 
principle) that every structure M possesses an enlargement *M. *M is 
a proper extension of M if and only if the number of individuals of M 
is infinite and, in this case, there are many nonisomorphic enlarge­
ments for the given M. In particular *M can be constructed as a suit­
able ultrapower of M [4], [8], [ l0]. However, in many cases the mode 
of construction of *M is irrelevant and all necessary information con­
cerning it can be extracted from the defining properties of an enlarge­
ment as laid down above. There are exceptions to this and some of 
them will be discussed in due course. 

The following example, which is fundamental, will show how we 
may be able to decide that a particular entity is not internal. 

Let N be the system of natural numbers and let *iV be an enlarge­
ment of N. The operations of additions and multiplications extend 
automatically from N to *N. The relation of order, x <y, is concurrent 
in N. I t follows that it possesses a bound in *N, to be denoted by b. 
Then 0 <b, 1 <b, and, quite generally, n <b in *JV for all natural num­
bers nÇzN. This shows that *iV is a proper extension of N, in agree­
ment with the general statement made above on enlargements of 
infinite structures. From now on all individuals of *iV will be called 
natural numbers, the numbers of N being standard and finite while 
the remaining numbers of *iV are nonstandard and infinite. I t is not 
difficult to show that any infinite natural number is greater than 
every finite natural number. 

The set of infinite natural numbers, *N—N, cannot be internal. 
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For it is a fact of N that "every nonempty set of natural numbers in­
cludes a smallest element. " Reinterpreting the statement in quotes for 
*iV, we conclude that every internal set of numbers of *N includes a 
smallest element. For if a is a finite number, a + 1 also is finite; so if 
aÇz*N—N, i.e. if a is infinite, then a — \ also is infinite. This shows 
that *N-~N cannot be internal. 

For an example of an internal set, consider the set A of all infinite 
natural numbers greater than some infinite natural number a, 
A = {3/1y>a]. I t is true in N that "for every natural number x there 
exists a set z which consists of all natural numbers y such that 
y>x." But the statement in quotes must be true also in *N in the 
sense that for every number x in *iV there exists an internal set z 
such that z = {y\y>x}. I t follows in particular that A = {y\y>a} 
is an internal set. 

When applying nonstandard analysis to other mathematical struc­
tures, e.g., to a topological space T, it is essential to consider not only 
an enlargement *T of T but to enlarge simultaneously all other math­
ematical structures which occur in the argument, e.g., the natural 
numbers, N. This can be done by taking for M some structure (e.g., 
a model of Set Theory) which includes both T and N. We.then work 
in an enlargement *M of M which contains simultaneous enlarge­
ments T and *N of T and N. 

Although we have assumed for the definition of an enlargement 
that all concurrent binary relations in M possess bounds in *M, only 
a small proportion of these will be required in practice. Thus, in 
retrospect, it is then possible to weaken the definitions of an enlarge­
ment by supposing that only the concurrent relations that are in­
volved in the argument possess bounds in *M. We shall then say that 
*M is an enlargement for the relations in question. 

In particular, let M be a structure which includes the natural 
numbers N and let *M be an enlargement of M for the concurrent 
relation x<y between natural numbers. Then *M contains an exten­
sion *N of N which is an enlargement of N for the relation x<y. 
We claim that if R(x, y) is a concurrent relation in M, of any type, 
with countable first domain, then R(x, y) possesses a bound in *M. 
Indeed, let A = {a0, fli, a2, • • • } enumerate the first domain of such 
a relation. By assumption, there exists a sequence of entities B 
= {boy &i, 62, • * • } in M such that R(aj, bk) holds in M for ji&k, 
& = 0, 1, 2, • • • . The "sequences" *A and *B which correspond to A 
and B in M then have subscripts ranging over all numbers nÇz*N. 
The statement "for every natural number x and for every natural 
number y<x, R(av, bx) holds in M" must then be true also in *M, 
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where it applies, more precisely, to the extension *R of R. In particu­
lar, it is therefore true in *M that, for an arbitrary infinite natural 
n u m b e r s , R(ay, bw) holds in *Mfor all y^œ and, hence, for all finite 
y. This shows that bw is a bound for R(x> y). 

Suppose in particular that *M is an ultrapower Mp of M where the 
natural numbers N are included in M and also serve as index set for 
copies of M, and D is a free ultrafilter on N. Then the internal en­
tities of *M are simply all sequences a= {an}, 6 = {bn}, S~ {Sn}, 
• • • of entities of corresponding types in M. Two entities of *M are 

regarded as equal if the set of subscripts on which they coincide be­
longs to D. And if, for example, a and b are individuals in *M and S is 
a binary relation, then S (a, b) holds in *M by definition if the set 

{n\ Sn(an, bn) holds in M] 

belongs to D. Then *M is an enlargement of M for the concurrent 
relation < between natural numbers, for {0 ,1 ,2 ,3 , • • • } isanumber 
of *N which is greater than any element of N. Accordingly, all con­
current relations of M with countable first domain possess bounds 
in *M. 

3. Infinite Galois theory. Let F be a commutative algebraic field 
and let $ be a separable and normal algebraic extension of F. That is 
to say, $ is an algebraic extension of F and if a polynomial f(x) 
(£F[x] which is irreducible in F possesses a root in $, then ƒ(x) splits 
into distinct linear factors in $. 

If $ is of finite degree over Ff we have the standard Galois theory 
for $/F which establishes a bijection between the subgroups of the 
group of automorphisms G of <f>/F and the subfields of $ which are 
extensions of F. Dedekind pointed out that this correspondence 
breaks down if $ is of infinite degree over F, and Krull showed 
[ l l ] that the situation can be saved by restricting consideration to 
subgroups of G which are closed in a certain topology. Here we shall 
give an independent approach to the problem and shall then estab­
lish its connection with Krull's theory. We shall suppose from now 
on that $ is an infinite extension of F. 

Let *<£ be an enlargement of $ and let *F be the corresponding 
enlargement of F, * J F C * $ . Let G be the Galois group of <&/F so that 
*G is the corresponding group for *$/*F. Consider the binary rela­
tion R(x, y) in <E> which is defined as follows: 

ax and y are finite normal algebraic extensions of F and subfields 
of $ and x(Zy." 
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I t is not hard to see that R(x, y) is concurrent and hence possesses 
a bound S? in *<ï>. By the definition of a bound, ^f is a subfield of *<ï> 
and an extension of *Ft and moreover, ^fZ)*At where A is any subfield 
of <£ which is a finite normal extension of F. But the union of such 
fields A is equal to <£>, and *AZ)A, and so >IO$. At the same time, 
reinterpreting the defining properties of R(x, y) in *<£, we see that 
^ is a "finite" extension of *F in the sense of the enlargement. That is 
to say, there exists a natural number nG*N, which may and will be 
infinite, such that n is the degree of ^ over *F. Following a suggestion 
of M. Machover, we shall say that ^ is of star finite degree over *<F 
(in place of Q-finite for quasi-finite as in [l8]). There exists a "poly­
nomial" f(x) of degree n with coefficients in* F such that St" is the 
splitting field of f(x). Tha t is to say, all general statements which 
can be made about splitting fields of polynomials in the ordinary 
case can be made also about >? and f(x), with the appropriate inter­
pretation in the enlargement. In particular, there exists the Galois 
group H of iff over *F. H consists of all internal automorphisms 
of SP which leave the elements of *F invariant, where the word internal 
will be used throughout in the sense introduced in §2 above. We have 
the usual Galois correspondence between the internal subgroups of H 
and the internal subfields of \t" which are extensions of *F. 

Let <r£iï . By a standard result on extensions of isomorphisms, a is 
the restriction of some element of *G to >£. Moreover, since $ is a 
union of finite normal extensions of F, a * C $ and c r - ^ C * and so 
(T$—$. Thus, the restriction °<r of a to $ is an automorphism of $ 
which leaves the elements of F invariant. Then °a^G9 and <F-±°<T 

determines a homomorphism from H onto G, whose kernel consists 
of the elements of H that leave all elements of $ invariant. We write 
H->°H=G. 

Let © be a subfield of $ and an extension of F, FC©C*> and put 
(*®)y~*®r\ty. Let H® be the subgroup of H which corresponds to 
(*©)# under the Galois correspondence. Define °H@ by 

°HB = {r J r = °er for some a £ He]. 

As shown, the elements of °H® are automorphisms of $/F so that 
°H®C.G. More precisely, °H® is a subgroup of G. 

We claim that © is the set of invariants of$ under °H®. 
In fact, © C (*©)*» and the elements of (*©)* are invariant under 

the automorphisms of He. On the other hand, if #£<£, but a(£ ©, then 
a $ * @ and so a (£(*©)*• I t follows that there exists a crCEH® such 
that <ra?^a and so °<xa9^at This proves our assertion. 
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Conversely, °H& is the set of automorphisms of G which leave the ele­
ments of © invariant. 

Suppose that cr£G leaves the elements of © invariant. Then *a 
leaves the elements of *0 invariant. Thus (V)#, the restriction of 
*<r to ^ , leaves the elements of (*©)* invariant. Hence, ( V ) * £ i ? e 
and, further, cr = 0((*cr)*)E0üZ@. This completes the argument. 

Accordingly, we have a mapping 7 : ©—>°H® from the subfields of 
$ which are extensions of F into the set of subgroups of G. The main 
question is how to characterize the subgroups of G which belong to 
the image of 7. 

For any o-£*G, we define °<r as the restriction of a from *<ï> to # . 
°<r is then identical with °(cr*) where <r* is the restriction of a from 
*<ï> to ^ and °(cr*) is the further restriction of a* from ^ to $ as 
introduced previously. For any subset S of G, which may be internal 
or external, we define °S by 

°S = {r J r = °<r for some a G S}. 

3.1 THEOREM. A subgroup J of G belongs to the image of y if and only 
if °(*J) = J. 

Observe that 0(*J)1)J for all subsets J of G. Accordingly, the con­
dition of the theorem may be replaced by °(*J)CJ-

The condition is necessary. For suppose / belongs to the image of 
7, so that J = °H® for some field ©, FC.&C&, as above. Then J is 
the set of o-GG under which the elements of © are invariant; and so, 
by one of the basic properties of enlargements, * / is the set of crG*G 
under which the elements of *© are invariant. I t follows that all ele­
ments of © are invariant under the automorphisms which belong to 
°(*J) and so °(*J)QJy as asserted. 

Conversely, suppose that °(*J)=J. Let (*J)v be the group which 
consists of the restrictions of the elements of * / to ^ . Then (*/)* is 
internal. Let A be the subfield of ^ which corresponds to (* J) * under 
the Galois correspondence for \E\ Then the elements of A are invariant 
under the automorphisms of (*/)# and so the elements of © = A P \ $ 
are invariant under the elements of °((*Jr)^) =° (* / ) = J . Moreover, 
if a g $ ~ @ , then a G * ~ A and so cra^a for some (rG(*/)*. Hence 
°aa^a where °cr£0 ((*/)*) = J . Thus, © consists of all elements of © 
which are invariant under / , and further, *© consists of all elements 
of *© which are invariant under * / . But this shows that (*©)* 
= * © P \ ^ consists of all elements of St" which are invariant under the 
automorphisms of (*/)*; and so, ©* =A. Thus, in our previous nota­
tion, (*J)y~H® and J = °H®. Hence 7 : ©—»/, as required. This com­
pletes the proof of 3.1. 
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3.1 can be used for the proof of standard results, for example of the 
well known 

3.2 THEOREM. J—y(@) is a normal subgroup of G if and only if 0 
is a normal extension of F. 

PROOF. If ©C1*- is a normal extension of F then *© is a normal ex­
tension of *F. Hence, (*©)* is a normal extension of *F. Conversely, 
if (*©)* is normal over *F then © = (*@)*n<ï> is normal over F. On 
the other hand, if / is a normal subgroup of G then *J is a normal 
subgroup of *G and so c* J c r ^ C * / for any cr£*G. Hence, if J' = (*/)*, 
then <r^Jf(T^rlC.J,

i so J' is normal in the Galois group H of SP" over *F. 
Also, J=°(J') so / , which is the image of J' in the mapping 
JHT—>°H=G, also is normal. Thus, if °(*J) = J then J is normal if and 
only if (* J) * is normal ; and for any subfield © of * over F, © is nor­
mal if and only if (*©)* is normal. But (*/)* and (*©)* correspond 
in the Galois correspondence of ty/*F if J and © correspond in the 
Galois correspondence 7 of $/F. Hence / is normal if and only if © is 
normal. This proves 3.2. 

The connection of our condition °(*J)=J with Krull's theory is 
provided by the following observations. 

If °(*J) = / and cr£:G — J, then there exist a\, • • • , anÇîQ such that 
all a'(EG which coincide with a on ai, • • • , a„, cr'a$- = (ra$-(i=l, • • • , n) 
do not belong to J either. 

In this condition, we might replace ai, • • • , an by a single a such 
that F(a) includes ai, • • • , an. 

PROOF. Given aÇzG — J, suppose on the contrary that for every 
ai> • • • , ö n G * there exists cr'ÇiG which coincides with cr on ai9 

• • • , an and such that < / £ / . Then the relation R(x, y) which is 
defined by " x G $ and yÇzJ and ax = yx" is concurrent. Thus, there 
exists & y=T in *J such that aa = ra for all a£<ï>. But then <T = °T 
G 0 (* / ) = / , a contradiction. 

Conversely, given a subgroup JQG, suppose that f or every <r(EG~J 
there exists a finite set [ai, • • • , an} C $ such that af£G — J for all 
a'ÇE.G which coincide with <ratai, • • • ,a», i.e.f<xai = afai1 ( i = l , • • • ,n). 
Then°(*J)=:J. 

For suppose aE:G — J, but <x = °r for r = *J. Then cra = ra for all 
#£<£ and, in particular, aai = *<xai = rai for i = l , • • • , w. Hence, 
applying the condition of the theorem to *<£, r £ * G — */ . This con­
tradiction proves the assertion. 

In the Krull topology, a fundamental system of neighborhoods of 
the identity in G is provided by the subgroups which leave finite ex­
tensions of F invariant. We have just shown that °(*J)—J if and 
only if / is closed in that topology. 
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If <I> is an algebraic number field, the Krull topology satisfies the 
first (and also the second) axiom of countability. I t is then true (com­
pare Theorem 9.3.12 of [18]) that the standard part °A of any inter­
nal subset A of G is closed. I t follows that, in that case, a subgroup J 
of G is closed in the Krull topology and, equivalently, belongs to the 
Galois correspondence for $ over F if and only if ƒ is the standard 
part of an internal subgroup H of *G, i.e., J~°H. W. A. J. Luxemburg 
showed recently [13] that even without assuming the validity of an 
axiom of countability, the standard part of any internal subset of an 
enlargement *T of a topological space T must be closed provided *T 
is a particular kind of enlargement, a so-called saturated model. For 
this type of enlargement, the above conclusion concerning closed sub­
groups of G applies for uncountable <ï> also. 

Coming back to the general case, we observe, for future reference, 
that the Krull topology of G can be defined without mention of $, 
since a fundamental system of neighborhoods of the identity in G is 
given by the set of subgroups of G which are of finite index in G. 

As we have seen, G is a homomorphic image of the starfinite group 
H, H—>°H =G. G is also pro-finite ([22], i.e., it is a projective limit 
of finite groups. We are going to show that every pro-finite group is a 
homomorphic image of a starfinite group. To see this, let the group 
G be the projective limit of a set of finite groups {Ga} which is indexed 
on a preordered set / , filtered to the right, with a specified system of 
homomorphic maps ƒ«#: Gp—>Ga. Passing to an enlargement, we see 
that there exist elements co£*7 which majorize all elements of 7, 
a g co for all a (E / . Then Gw is a starfinite group since the Ga are finite 
for standard a. In order to map Gw homomorphically on G, we ob­
serve that the elements of G are points g = {ya} of the cartesian 
product XlG« where 7<*(EGa for each a £ J . We define a mapping 
<j>: Gv-^G by 

7->{Y«} = {fa»y} = g 

for any Y £ G . Then ya ~fapyp for all a and fi in I so that g — <f> belongs 
to G. Evidently, <f> is a homomorphism. It only remains to be shown 
that it is onto. 

Let g— {ya} be an arbitrary element of I and set 7 —7W. Then 
<i>y~ {/a«7w} = {7«} =g. This completes the argument. 

4. Absolutely algebraic fields of prime characteristic. Let p be a 
standard prime number, p will remain fixed throughout this section. 
Let F be the prime field of characteristic p. For every positive integer 
n there exists a field <£n which contains just pn elements. <f>w is unique 
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up to isomorphism, and all finite extensions of F are obtained in this 
way. If m\ n then $» contains just one field (isomorphic to) $m . The 
elements of $w constitute the set of roots of the equation xp7i—x = 0. 

Suppose now that $ is any algebraic extension of F, possibly in­
finite. We consider an enlargement *<£ of $ . *<£ contains an enlarge­
ment *F of F but in the present case, *.F = Ff since F is finite. An argu­
ment similar to that given at the beginning of §3 above shows that 
there exists a natural number n (which may now be infinite) such 
that $C^>nC**- To continue, we introduce Steinitz' ^-numbers, now 
known also as surnatural or supernatural numbers ([5], [12], [2l]). 
A surnatural number is a symbolic expression g = 2v03n • • • pv

k
k • • • 

where Pk ranges over all (standard) primes and the vk are natural 
numbers, VkÇzN, or else vu— °° where the "symbol" 00 is taken to 
be greater than any z>£iV. Surnatural numbers are multiplied by 
adding exponents with the convention that for all natural v, <*> +p 
= */-{- 00 = 00 + 00 = 00. The surnatural number g = 2v03vi • • • pv£ • • • 
divides the surnatural number & = 2/403M • • • £ £ * • • • , and we write 
g\ h> if Vk1=kl*k for all k. The g.c.d. and l.c.m. of a finite or infinite set 
of surnatural numbers are defined in the usual way. 

Observe that so far the notions concerning natural numbers, in­
cluding the introduction of the "symbol" 00, were constructed en­
tirely within a framework M regarded as standard. Passing to an 
enlargement *M of M, we now define the surnatural part, [n]} of any 
finite or infinite number nÇz*N by [n]~ 2VQ3n • • • pv£ • * • where Vh 
is the exponent of pk in the prime power decomposition of n if that 
exponent is finite; and Vk== <*> if the exponent in question is infinite, 
with pk ranging over the finite primes. Thus [n] is a standard sur­
natural number, and the mapping n-*[n] is external (not internal). 

For <3>0£n, as above, $w contains exactly the same absolutely alge­
braic elements as $ . For if F is the algebraic closure of F (unique up 
to isomorphism) and aCzT—Q, then a £ * F —*$ in the enlargement 
and so a $ * $ and, a fortiori, a ^ $ w . 

Now let m be any finite natural number which divides n. This will 
be the case if and only if m divides [n]. Then $ n contains (a field 
isomorphic to) <£>m as in the standard case. Since all elements of $ m 

are absolutely algebraic, it follows that $ contains <£w. Conversely, 
if $»»C$ for finite m then $ m C*n and so m divides both n and [»]. 
Thus [n] (but not n) depends only on 4> and is the l.c.m. of all finite 
m such that * m C * . We call [n] the Steinitz number of $, #(<£>). 

Within this framework, Steinitz' result, that to every surnatural 
number g there exists one and (up to isomorphism) only one abso­
lutely algebraic field of characteristic p whose Steinitz number is g, 
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can be proved as follows. Given g, it is easy to show that there exists 
a finite or infinite natural number n such that [n] =g. Let 3>« be the 
corresponding field which contains pn elements and let $ be the sub-
field of <£n which consists of the absolutely algebraic elements of $w. 
Then the argument of the preceding paragraph shows that g is the 
l.c.m. of all finite natural numbers m such that $ m C ^ and hence, 
g = 7(<ï>). On the other hand, let $ and SF be two absolutely algebraic 
fields of characteristic p with the same Steinitz number g. In order to 
prove that $ and ^ are isomorphic, we may suppose more particularly 
that they are contained in the same algebraic closure of F, F, and we 
shall then show that <£ and St" actually coincide. Choose a field $ n D $ 
as in the preceding paragraphs and choose a field &mD^ in the same 
way fo r^ . Then $nC*$C*F and $ W C * * C * ^ and [» ]= [m]=g. Let 
k be the g.c.d. of n and m so that again [k] =g. Let <£* be the subfield 
of *F which contains just ph elements. Then $ j t C $ n ^ m . Let © be 
the field which consists of the absolutely algebraic elements of <!>&, 
then we claim that ©=<!>. For let a G $ , then the field A generated 
by a over F contains just pl elements for some finite /. Then l\ n and 
hence l\g and l\k. This implies AC**, and further, a £ $ * , a £ 0 . 
Accordingly, © =<£ and, similarly, © =^ r , and hence <ï> = ^ , as asserted. 

5. P-adic numbers and valuation theory. Let F be a finite algebraic 
extension of the field of rational numbers Q (e.g., Q itself), and let *F 
be an enlargement of JF. For a given archimedean valuation V of F 
and hence, of *F, we denote by Fo the set of elements a of *F such 
that \a\ is finite in the given valuation, i.e., such that \a\ g r for 
some standard real number r. Also, we denote by F\ the set of ele­
ments a of *Fsuch that |a\ is infinitesimal, i.e., such that \a\ <r for 
all standard positive r. Then it is not difficult to see that FQ is a valua­
tion ring and F% is a valuation ideal. The valuation V' which is in­
duced in *F by the ring Fo is nonarchimedean although the original 
valuation V was archimedean. The valuation group T' of V is 
(isomorphic to) the multiplicative quotient group of *F— {o} with 
respect to the group FQ — FI. If V is real, FQ/FI is isomorphic to the 
field of real numbers R as can be seen most directly by injecting F 
into R and hence *F into *R. The corresponding homomorphism 
<[>: Fo-*R consists of taking the standard part of any a£,Fo in the 
metric induced by V. Tha t is to say, for any aG^o, $(#) — ^ is the 
uniquely determined real number such that <j>{a)—aÇzFi. The map­
ping <f> is surjective; for if r is any standard real number, then there 
exists a standard sequence {sn}, snÇ:F, nÇN such that limn->oo sn = r. 
Passing to the enlargement, we then have Sa — r&Fi for any infinite 
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natural co and so °sn = r. Similarly, if V is complex then F0/Fi is iso­
morphic to the field of complex numbers. 

Now let P be a prime ideal in P. For any a £ F , a5*0, we define 
ordp(a) as usual as the exponent of P in the prime power decomposi­
tion of the ideal (a), ordp(a)^0; and we set ordp(&)= °° for a = Q, 
by convention. The definition of ordp(a) extends to *P and then 
ranges over the finite and infinite rational integers and oo. We define 
F0 (for the given P) as the set of elements a of *P such that ordp(a) 
is greater than some finite negative integer, and we define P1CP0 
as the set of a £ * P such that ordp(a) is an infinite natural number 
or oo. As before, P0 is a valuation ring in *P and Fi is its valuation 
ideal; the corresponding valuation group is the multiplicative quo­
tient group of *P— {o} with respect to Po — Pi, and the valuation VP 

thus obtained is nonarchimedean. However, VP is still different from 
the P-adic valuation VP of F or *P. 

I t is not difficult to show that F0/Fi is (isomorphic to) the P-adic 
completion of P. In particular, if P is the field of rational numbers 
and P = {p} where p is a standard prime number, then P0 /Pi coin­
cides with the field of £-adic numbers. Thus, we obtain the archi-
medean and nonarchimedean completions of P within the framework 
of Nonstandard Arithmetic by introducing appropriate valuation 
rings and ideals in all cases. The uniformity of the procedure becomes 
even more apparent if we put ord(a)= — \a\, for we then have 
a G Pi if ord(a) is infinite or equal to oo, just as in the non-archi-
medean case. The analogy can be pursued further, but here we ob­
serve only that it motivates the notation used in the sequel for archi-
medean divisors. 

From now on, we shall use the notation ordp(a) for both # £ P and 
a £ * P , and both for prime ideals in P and for "infinite primes" P 
where the word "infinité" is used here in the sense of valuation theory, 
not in the sense of nonstandard arithmetic. In order to minimize 
confusion, we shall call such symbolic primes (places) from now on 
only archimedeany while the primes (places) which correspond to 
prime ideals will be called nonarchimedean replacing the terms 
infinite and finite of valuation theory in this context. (Observe that 
in nonstandard arithmetic it is just the finite primes that have a good 
claim to being called archimedean!) As for the "symbol" oo, it is 
neither finite nor infinite in our sense but is a standard entity which 
is greater than any finite or infinite natural number in the enlarge­
ment since it was taken to be greater than any finite natural number 
in the standard framework. 

By a surdivisor g in P, we mean a formal infinite product g = U P / ' 
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where Pj ranges over the standard archimedean and nonarchimedean 
primes and Vj may be any standard natural number or <*>, However, 
if Pj is archimedean, then we admit for Vj only the values 0 and <*>. 
Vj is the exponent of Py in g and Py occurs in g if Vj>Q. For F = Ç w e 
may replace Py by the corresponding rational prime number pj so 
that the surdivisors of Q in which the archimedean prime of Q does 
not occur may be regarded also as surnatural numbers. A surdivisor 
will be called a divisor if the number of primes which occur in it is 
finite, and if VJT*<X> for all nonarchimedean Py. Surdivisors are 
multiplied by adding exponents. Divisibility, g.c.d., and l.c.m. are 
defined in the usual way. 

Surdivisors are defined as standard entities which have a meaning 
relative to both F and *P. Only such surdivisors will be considered. 
We observe, however, that the notion of divisibility and related no­
tions which are defined in the next paragraph are not standard and 
not even internal. 

Let a £ * P . The surdivisor g = H P / ' divides a if ordp/ûOè^y in 
case Vj is a natural number VjÇN, and ordp^a) is an infinite natural 
number in case *>y= <*>. a is said to be entire for g if ordpy(a)èO for 
VjÇzN and ordp^a) is greater than some standard negative integer 
for Vj = oo. For the given g, the ring Fg<Z*F is then defined as the set 
of a G * P which are entire for g; and JgQFg is defined as the set of 
ö(E*P which are divisible by g. Then JQ is an ideal in F0. Let K0 be the 
quotient ring Fg/Jg. 

The following special cases are basic. 
5.1. g = l, i.e., *>y = 0for all Py. Then Fg~Jg^*F and so Kg = {o}. 
5.2. g = Pj where Pj is a nonarchimedean prime, i.e., j>y=l and*\==0 

for all other P*. Let °Fg and °Jg be, respectively, the restrictions of Fg 

and Jg to P. Then °Fg is the valuation ring for the Py-adic valuation 
VP. and °Jg is the corresponding valuation ideal. I t follows that 
°Fg/°Jg is a finite field of characteristic p where p is the rational prime 
number contained in Pj. But finite sets are not extended on passing 
from F to* F and so 

* W % ) = * W / * ( % ) = F,/J9 = K0 

is the same finite field of characteristic p. 
5.3. g = PjV3' where Py is a nonarchimedean prime and Vj is a natural 

number greater than 1 (z>; = 0 for all other P t ) . We see, similarly 
as in 5.2, that Kg is now a finite ring of prime characteristic. 

5.4. g~P™ where Pj is an archimedean or nonarchimedean prime 
(and *>i=0 for all other P J . In this case, Fg and Jg reduce to the ring 
P0 and the ideal Pi introduced at the beginning of this section. I t fol­
lows that Kg is the Py-adic completion of F îf Pj is nonarchimedean, 
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or the field of real or of complex numbers if Pj is real or complex 
archimedean, respectively. 

Now let g = H - P / ' be any surdivisor, g?* 1. For any Pj which occurs 
in g, we call P/> a primary f actor of g and we denote it by gj. We regard 
gj as a surdivisor in which j>t = 0 for i^j and we write g = IJgy where 
j ranges only over the subscripts for which *v>0. 

We are going to prove 

5.5 THEOREM. For any ultrapower enlargement, K0 is isomorphic to 
JJ^Kgj where YL indicates the strong direct product {strong direct sum). 

PROOF. We may suppose that g possesses a t least two distinct pri­
mary factors. For any primary factor gj of g, we construct a homo-
morphism cey: Kg~>Kg. as follows. Let hj = H«w g» s o t n a t g^gA-
Then Fg = Fgjr\Fhj and Jg = JgjfMh.. Put Jf

gj~Jgjr\Fg and Jhj' 
— Jhjf^Fg so that Jg. and Jf

hj are ideals in Fg. 
We claim that (Jgp J^.) « F„. Tha t is to say, we assert the existence 

of a, bÇE*F such that a+b = l where a and b are entire for g and, 
moreover, a^J0i and b^Jhr In order to find an appropriate a, we 
have to satisfy the conditions 

5 .6 ordpj(%) è VJ, 

5.7 ordpt.(# — 1) è Vi for any other Pi occurring in g. 

If Vj= 00 or i>i= 00 we now replace 5.6 and 5.7 by sequences of 
conditions, 

5.8 oidp^x) ^ 0, ovdpj(x) è 1, • • • , ordpy(#) ^ n, • • • 

or 

ordP<(* - 1) è 0, ordp,(* — 1) ^ 1, • • - , 

ordpt.(x - 1) è », • • ' , 

respectively, where n ranges over all finite natural numbers. The 
approximation theorem of valuation theory shows that any finite 
number of conditions as in 5.8 and 5.9 can be satisfied already by 
some x in F. Using an appropriate concurrent relation, we may con­
clude that all conditions 5.6, 5.7, or if Vj, i>i= <*>, 5.8, 5.9 can be satis­
fied simultaneously by some x = a in *J7. Since ordp^x — ^^p^O 
implies ordp^(x) ^ 0, we conclude that a^Fgj while ordpy(a) è Vj shows 
that aÇzJgi. Hence aÇ~J'gr 

Next we determine brÇz*F such that x~bf satisfies the conditions 
ordpy(x-~l)^^y while ordp^^Vi f ° r aa* other P{. This can again 
be done by means of an appropriate concurrent relation, and yields 
anx~b' which belongs to Jj^ Furthermore, if Pj is nonarchimedean, 
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ordp^a + V — 1) ^ min(ordpy(a), o rdp / i ' — 1)) *z py, 

while if Pj is archimedean, so that Py=oo, then a t any rate 
ordpj(a+b'~l)= <*> also. Similarly, for i^j, o r d p ^ a + è ' —1) 
= ordpt.((a — l)+b')*zvi in all cases, and so a+b' — K-Jg- But 
JgCJjij and so 5 = J / ~ ( a + J , ~ l ) = l - a G / I i where a + ô = l. This 
shows that (J^., J'hj) = P^, i.e., J^. and Jr

h. are comaximal in Fg. 
Now let c be any element of Fg. With a and ô as above, put Cj = cb. 

Then Cj^Jf
hj. and c — Cj = c(a+b)—cb = ca(EJgr Suppose that some 

element cf^Fg satisfies the same conditions as cy, i.e., 

5.10 c G Tiy, c — c E fgj. 

Then c' — CjÇzJty c' — CjÇzJ'ffJ and so c' — CjÇzJ0. Hence, denoting by 
<£y the canonical map from Jj^ onto J'h./'Jg, we see that c—*£y(c')> for 
c' satisfying 5.10, defines a mapping \̂ y from Fg into J^/Jg. I t is not 
difficult to show that \j/j is a homomorphism. 

On the other hand, 

fhj/Jg = Jhj n Fg/jhj n /,, = /A, n F, .// hj n /,„ 

since Jhir\Fg = Jhjr\Fhjr\Fgi = Jhjr\Fgj. We claim that Jhjr\Fg./Jhj 

r\F0j is isomorphic to Fgj/Jg. = Kgj. Indeed, the cosets of Jh^Fg. 
with respect to Jh^J0j are subsets of the cosets of 7<V, with respect 
to Jg$ and every coset of the latter class contains a t most one of the 
former. Accordingly, it only remains to be shown that every coset of 
the second class contains a t least one coset of the first class. Thus, 
given any fÇzFg. we are required to find an fÇzJQi such that ƒ— ƒ' 
G Ay. In other words, we have to show that there exists an x=f 
which satisfies the conditions ordpj(x)*ZVj, ordpi(f—x)^Vi for any 
other Piy and this can again be done by combining an application 
of the approximation theorem with the introduction of a suitable 
concurrent relation. Hence, if we map every coset of Jn^Fg. on the 
coset of Fgp in which it is contained, we obtain an isomorphic map­
ping Xi from Jty/Jg onto Kgj. I t follows that Xy = %ŷ y is a homo-
morphic mapping from Fg into Kg. and 

X: c -» (Xi(c), X2(c), • • • , Xy(c), • • • ), 

where Xy is included only for Py which occur in g, is a homomorphic 
mapping from Fg into H-B^y. The kernel of X is the set {c|^y(c) = 0 
for all Pj in g]. For such Py the corresponding c' (see 5.10) belongs to 
J0. Hence cEJV, for all appropriate g-, and so ct-Jg-

Accordingly, X induces an injection <r of Kg = Fg/Jg into TlKgj. 
I t remains to be shown that X is a surjection. For this purpose we 
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employ, once again, the approximation theorem. Let (co, ci, • • • > 
Cj, • • • ) be an arbitrary element of TLKgj. We have to find a cÇzF0 

such that \(c) =cj, i.e., we have to find a c £ * P such that c is entire 
for g and \j(c) =c3\ Thus, for arbitrary dj — xTl(cj)E:Jhj/Jo> we have 
to find c £ * P , which is entire for g such that 4>j(c) =d^. Or, again, we 
may give cj EzJIij arbitrarily (where dj=<t>j(cj)) and we then have to 
find c £ * P s u c h that (compare 5.10) 

5.11 c — CjÇz J'gj for all Pj which occur in g 

where c is entire for g. However, the last condition is now redundant 
since cj E:J'hjCFg and JgjCFg, so any c which satisfies 5.11 must be 
entire for g and this is true even if we relax the condition cj GJf

ffj and 
require only 

5.12 cJEF,. 

In order to satisfy 5.11 subject to the condition 5.12 it is sufficient 
to find x = c, which satisfies 

5.13 ordp^tf — cj) = 00 for all Pj in g; 

for since cj £P f l , we then have c — cj ÇzFQ automatically and we cer­
tainly have ordpy(c —c/)è^y. Furthermore, we may replace 5.13 by 
sequences of conditions, 

5.14 ordPy(# — cj) g> 0, oxàPj(x — cj) ^ 1, • • • , 

ordpjix — cj) â k} • • • 

where k ranges over the finite natural numbers. 
At this point, we make use of our assumption that *F is an ultra-

power. I t can then be shown [20] that for any sequence of internal 
entities {Sn} of the enlargement, with subscripts ranging over Nt 

there exists an internal sequence Tn in *F, n ranging over *N such 
that Sn = Tn for all nEN. 

We range the conditions 5.14 in a simply infinite sequence with 
subscripts in N and we denote the Py, cj, and k which occur in the 
nth condition by P ( w ) , c(n), and k(n\ respectively. Evidently each Pj, 
Cj, and k will appear repeatedly in the sequence. We now consider 
the sequence of ordered triples 5 n = (P(w), c(n\ &(n)), nEN> and we 
extend it to an internal sequence {Tn} as above, nE:*N. The follow­
ing sentence then holds in *F, by virtue of the approximation the­
orem, for every finite or infinite m. 

"There exists a £ £ * P s u c h that ordp<»>(ê-c<n)) à& ( n ) for all n^tn." 
For any infinite m, a corresponding x = £ then satisfies all the condi­

tions of 5.14. This completes the proof of Theorem 5.5. 
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Notice that we introduced the assumption that * F is an ultrapower 
for the last part of our proof because the argument from concurrent 
relations applies in our present framework only to standard binary 
relations. 

Consider in particular the surdivisors y = I J P f where Py ranges 
over all archimedean and nonarchimedean primes in F and 5 = H P / 
where Py ranges over the nonarchimedean primes only. We call these 
the adelic (the restricted adelic) surdivisors, respectively. Still sup­
posing that we are dealing with an ultrapower enlargement, we know 
that Ky (Ks) is isomorphic to YL^gj where gj = P™ and Py ranges over 
all primes (over all nonarchimedean primes) in F. Writing cf> for the 
isomorphism in question, <f>(K7) = JJ^Kgj o r $ C ^ ) = IX^y» a s the 
case may be, we then have for any c(EKy (for any cÇ-Kt) 

<j>{c) = (Co, Ch • • • , Cj, • • • ) 

where c, ranges over the P-adic and archimedean completions of F 
(over the P-adic completions only). 

The adèle ring A y (the restricted adèle ring A 5) is defined classically 
as the ring of elements (co, 61, • • • , £y, * * • ) G I T ^ y such that 
ordpy(cy)èO for all but a finite number of 7. Similarly, the idèle 
group ly (the restricted idèle group Id) is defined as the multiplicative 
group of elements of Y[K0j such that c^O for all j and ord py(cy) = 0 
for all but a finite number of ƒ Recalling that Ky = Fy/Jy (K8 = Fi/Js), 
we write fxy (JJLS) for the homomorphism P7—>H-K"^ (Ps—^IJi^y) with 
kernel Jy (Js). For aÇzFy (ûGft) we then have ordpy(#) à 0 if and only 
if ordpy(/x7(a))^0 (ordpy(/zs(âO) à 0 ) for nonarchimedean Py and 
°(ordpy(a)) è 0 if and only if ordpy(jur(a)) ^ 0 for archimedean Pj. 

The properties of adèles and idèles are reflected in the properties of 
their inverse images in Fy and F§ by JLC7 and ^5 (compare [20 ] where the 
corresponding question is discussed for Dedekind rings). Let a be 
any element of Fy (F§) such that a 9^0. Then the entire or fractional 
ideal (a) can be written as a product of finite or infinite powers 
ordoy(a) of a finite or infinite number of prime ideals Qj in *F where 
the Qj may be standard or nonstandard. However, for standard Qj 
the exponent of Qj cannot be negative infinite, since a belongs to Fy 

(belongs If to P5). If ord^.(a) is finite for all standard Qj and is zero for 
almost all such Çy, then we call a Prüfer-finite. Then jJLy(a) Gu5(a)) 
is an idèle (a restricted idèle) if and only if a is Prüfer-finite and 
fxy(a) (MÔ(#)) is an idèle unit if and only if ordçy(a) = 0 for all standard 
Qj, i.e., if a has nonstandard prime ideal factors only. Thus, for 
standard a, fxy(a) and ^(a) are idèle units if and only if a is a unit 
(invertible algebraic integer) in *P. 

Now let A be a standard entire ideal in P, so that *A is the cor-
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responding ideal in *F. Then *A has a two element basis, *A — (ce, /9) 
where a and /3 are algebraic integers in *F and where /3 may be any 
arbitrary nonzero element of *A. In particular, we may choose a 
JST^O which is divisible by the restricted adelic surdivisor 5. Then 
jUa(/3)=0, while aCEFs since a is an integer. Hence, Ms(*^) ^MafaO» 
and so *̂ 4 corresponds to a principal ideal in I J i ^ ( a s *s a ' s o evident 
from the theory of idèles). I t follows that ordp^^t) ~ordpy(a:) for all 
standard prime ideals Py and there exists an entire ideal B in *P 
such that *AB=t (a) where B is divisible only by nonstandard prime 
ideals. This shows, incidentally, that to every class *C of ideals 
(multiplicative coset of principal ideals) in *P and to every pre-
assigned finite set of standard prime ideals 5, there exist entire ideals 
in *F which are not divisible by any ideal in S. Indeed, we only have 
to take the standard ideal *A as a representative of the class *C~1, 
then the above B is an ideal of the required type. And since our con­
clusion holds for *F, it holds also in F, by the usual argument for 
transferring conclusions from F to *F and vice versa. In this case, 
however, only the argument is of interest, since the result is a simple 
consequence of the classical theory. 

To sum up the results of the present section, we have seen that the 
fields and rings which are commonly associated by the theory of valu­
ations with a given algebraic number field can all be obtained by a 
uniform procedure as homomorphic images of internal or external 
(noninternal) subrings of *F. 

6. Class field theory. Up to this point, we have used enlargements, 
in a sense, only as auxiliary concepts, that is to say, we have shown 
how they can be employed in the construction and investigation of 
classical theories. We shall now consider a situation in which a classi­
cal theory is known to fail in the standard model but can still be car­
ried out in an enlargement. This situation occurs in the class field 
theory of infinite abelian extensions and was in fact the occasion for 
the introduction of idèles by Chevalley [2], although not their only 
justification. To quote the example pointed out by Chevalley, let 
F= Q be the field of rational numbers and, for a given prime number 
pet3, let Fn=^F(^n) where Çn is a primitive pnth root of unity. Also, 
let F00 = \JnFn. In order to define the class group for Fn in accordance 
with the standard precept, we introduce Qo as the multiplicative 
group of rational numbers prime to p and entire for p, and In as the 
subgroup of Qo which is given by In = {q\ p i ( p n ) } . Then the multi­
plicative quotient group Qo/In is the class group of Fn. By analogy 
with the finite case, we might now expect Qo/Onln to be the class 
group of UnFn, but this conclusion is spurious since C\nIn = {1}. 

For any finite algebraic extension of the rationals Q, as in §5, let 
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g = H P / * ' be a surdivisor in P. An entire or fractional internal ideal A 
in *F is called entire for g if A 5*0 and if ordp.A^0 for all non-
archimedean primes Pj which occur in g. Notice that if Vj is infinite for 
some nonarchimedean Py in g, then a£ :*P may be entire for g accord­
ing to the definition of the previous section which was introduced 
relative to the valuation ring Fp", although A = (a) is not entire for g 
according to our present definition. A is called prime for g if A 5*0, 
and if for any nonarchimedean Py which occurs in g, ordpy^4 ^ 0 . 

We define the ray modulo g} R91 as the subset of *P whose elements 
a are defined by the following conditions. If Pp' is a primary factor of 
g and Py is nonarchimedean, then a — 1 is divisible by P/>; while if Pj 
is real archimedean then a > 0 in the corresponding embedding of *P 
in the enlargement of the real numbers, *P; and (to provide for a 
trivial case) a^Q. Rg is a multiplicative group. We denote by Ig the 
corresponding ideal ray group, i.e., the group of principal ideals (a) in 
*Psuch that a^Rg. 

Now let m be a divisor in P, where we recall that a surdivisor is 
called a divisor if the number of its primary factors Pp is finite and if 
a t the same time Vj = oo only for archimedean Pj. To m, there cor­
responds an ideal ray group Jm in P, in the classical sense, where Jm 

consists of the ideals A 9^0 in F such that A = (a) for some a £ P that 
satisfies ordpy(a — l) *ZVJ for all nonarchimedean Py occurring in m, 
and a > 0 for the order corresponding to any real archimedean Pj in m. 
I t is not difficult to see that 7m = *Jr

w. Standard class field theory 
assigns to Jm an abelian normal extension Fm of F as its class field. 
Fm is unique up to isomorphism and hence is determined uniquely if 
we require FmQF where P is a fixed algebraic closure of P. For any 
surdivisor g we now define the class field for g> F0, as the compositum 
of all fields FmCjF as m ranges over the divisors of F such that m\g. 
(For m=gf the notations Fm and FQ are consistent.) 

Let h be any internal divisor in *P, h= JXQJ1 where, by the defini­
tion of a divisor in *P, Qj ranges over the primes of *P, and the set 
of Qj for which /jy^O is starfinite. Moreover, jity may now be a finite 
or infinite natural number or oo, but the latter case is possible only if 
Qj is archimedean. In general, Qj may be standard or nonstandard 
internal, but if Qj is archimedean then it must be standard since the 
set of archimedean primes in P is finite and, accordingly, is not en­
larged on passing to *P. If Qj is standard then we may write Qj=*Pj 
for some prime Pj in P and there is no essential limitation in assuming 
that the subscript (J) is the same on both sides. Let *g be the injection 
of a surdivisor g into the enlargement (where we append the star in 
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order to avoid misunderstandings). For example, if g==Pj° then 
*g = *Pj°. Suppose that Pj is nonarchimedean and let h be the divisor 
/& = *PJ where œ is an infinite natural number. Then the standard 
definition of divisibility, when transferred to the enlargement, forces 
us to conclude that h\ *g but not *g\ h in *F. On the other hand, con­
sider any a £ *P such that ordp;.(a) = « — 1. By our definition of divisi­
bility by surdivisors, g\ a but not h\ a. In order to cope with this dis­
crepancy we need a new notion of divisibility of a divisor by a sur­
divisor. We shall say that the surdivisor g = Ü P ƒ ' surdivides the divisor 
h=YLQ? if f ° r a n y finite natural Vj and Q3 = *Pj we have fXj^vj 
(including the possibility that jUy = 00); while if J>y= <*>, then JJLJ is an 
infinite natural number, or juy = 00, We denote this relation by g\\h. 
I t holds in the special case considered above although *g\ h does not 
hold in that case. If, however, h is a standard divisor then g\\h only 

i f * * I A. 
For any surdivisor in F there exists a divisor h in *F which is sur-

divisible by g. In order to see this, range all standard Py in a sequence 
with subscripts in N, beginning with the archimedean primes. Put 

6.1 gk = Po P i • • • P* , k = 0, 1, 2, • • • 

where Py(&) —vj if py is a natural number, vj(k) = 00 if */y= 00 and Pj 
is archimedean and Vj(k)~k if *>y= 00 and Py is nonarchimedean. 
Then the g& are divisors in P. Passing to the enlargement and 
putting h = g(t) for arbitrary infinite co, we see that h is a divisor in *P. 
I t is not difficult to verify that g\\h, for if *>y = 00 and Pj is nonarchi­
medean then Vj(<x>) =OJ. 

Applying the standard theory to a divisor h in *P, we obtain an 
ideal ray group A and a class field P^ of Jh where *FQFh and where 
we may suppose that Fh(Z*lF. Let °Fh = Fhr\71 then °PA is the 
standard part of PA, i.e. 0P& contains just the elements of Fh which are 
standard. 

If g is a surdivisor and *g\\h then JhQIg- In that case, also, °FhDFa 

where Fg is the class field of g, as before. For let aÇzFg, then a belongs 
to the compositum of a finite number of fields Pmi , • • • , Fmk cor­
responding to divisors m\\ g} • • • , mk\ g. I t follows that aE:Fm where 
m is the l.c.m. of % , • • • , m*. But m| g with g\\h entails *tn\ h in the 
enlargement and so FmQ*Fm = F*mCFh. Hence aE:°Fh; F0C

oFh as 
asserted. 

Let i ? be the intersection of the fields °Fh as h ranges over the 
divisors which are surdivided by g. We claim that H= F0. 
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Since we have already shown that FhZ)Fg for g\\h, it follows that 
HZ^FQ. I t only remains for us to establish inclusion in the opposite 
direction. Let aÇzH, then a £ f t for any h such that g\\h. Also, in the 
notation of 6.1 above, g\\gk for all infinite natural numbers k and so 
0iCzFgk for all infinite k. But {Fgk} is an internal sequence and so we 
may conclude that aÇ~Fgk also for sufficiently large finite fe. Now, for 
all finite k, gk\ g and so F0kQFg. Hence aÇ:Fg, as asserted. 

Let Tg be the Galois group of F„/F. For any divisor h which is sur-
divided by g as before, let Th be the Galois group of Fh/*F. Let 
Ch be the group of ideals in * F which are entire and prime for hf then 
JhCCh* Moreover, there is a homomorphism from Ch onto I \ , with 
kernel Jh, which is given by the Artin symbol 

/Fh/*F\ 
Q ^ . ^ — L — j , QeCh, orgr». 

Let <j> be the canonical mapping from I \ to Tg with kernel K where 
K consists of the c r £ I \ that leave the elements of FgC.Fh invariant. 
K is not necessarily internal. The mapping <£> is onto, since every 
automorphism of Fg over F can be extended to an automorphism of 
°Fh over F which can then be extended to an automorphism of 7 
over F. On passing to the enlargement, this in turn can be extended 
to an internal automorphism of *JF over *F9 and then restricted to an 
automorphism of Fh over *F. Further restriction to °Fh and then to 
Fg leads us back to the original automorphism, which therefore be­
longs to the range of cj>. 

Let Cg be the group of ideals in *F which are entire and prime for g. 
We define a generalized Artin symbol to indicate a mapping from Cg 

to r , by 

for all ideals QÇzCg. The mapping is onto, since </> is onto. 
We claim that this definition is independent of our particular 

choice of h (provided g\\h, as above). Indeed, let k be any other divisor 
such that g\\k. We may suppose that h\k, for if this is not the case 
from the outset we may then prove that we obtain the same inter­
pretation of the generalized Artin symbol by taking the g.c.d. of h 
and k as we do by taking h or k. 

Suppose that g\\h and h\ k and hence g||fe. If Ch is the group of ideals 
of F which are entire and prime for k, we then have Ig~DJhDJk and 
CgDChD Ch and FgCFhCFk. Also, if Tk is the Galois group of 
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Fk/*F and 0' is the canonical mapping from Tk to Tg (corresponding 
to <j> for h) and \(/ is the mapping from Tk to Th whose kernel consists 
of the automorphisms in Tk that leave the elements of Fh invariant, 
then <t>'=<j>\f/. Now let Q be any prime ideal in Cu with norm NQ. 
Then if 

-m we have, for all a E .FA, 

6.2 <ra s «*«((?). 

But the same condition is satisfied by the restriction of a to Fh, i.e., 
by fa, and so 

/Fh/*F\ /Fk/*F\ 

Hence 

/Fh/*F\ /Fk/*F\ ,/Fk/*F\ 

which shows that our definition of the generalized Artin symbol is 
independent of the particular choice of h> if Q is a prime ideal. The 
general result now follows from the multiplicativity of the symbol. 

Let e be the identity in Tg, while Ig is the ideal ray group of g as 
introduced previously. We claim that for any QGCg, QÇzIg if and 
only if 

'FJF' 

Q 

To see this, observe that 

'Fh/*F' 

m-
m is the identity in Ty if and only if ( )£ Jh* Now suppose QÇïIg so that 

Q—(ç) where qÇzRg. Take h=* Ho?» where ju^ordo^g — l) for any 
nonarchimedean Qi and fr = 00 for any archimedean Qi which occurs 
in g. Then g\\h and (?£/&, and hence 

'Fh/*F 

(T)= 
and so 
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Conversely, suppose that 

but that QÇ£Ig. Let {gk} be the sequence defined by 6.1. {gk} is 
internal and g\\gk for all infinite k. It follows that, for such k, Q(£I0k. 
Hence, Q^Im where m = *gk for sufficiently large finite k, and so 

{—)''•• 
On the other hand, m\g and so another argument involving 6.2, 
applied this time to a(EFm, shows that 

/FJF 

\ Q 

in Tm, a contradiction which proves our assertion. 
We have now shown that IQ is the kernel of the homomorphism pro­

vided by the generalized Artin symbol. Thus, the symbol induces an 
isomorphism between C0/I0 and T0, Cg/Ig£^Tg, as one would like to 
expect of a class field. The isomorphism also provides a correspon­
dence between the subfields of Fg on one hand and certain subgroups 
of Cg/Ig on the other hand via the Galois group Tö. Thus the sub­
groups of Cg/Ig which appear in this correspondence are just those 
that are closed in the Krull topology. 

Suppose in particular that g =7 , where 7 was defined in the preced­
ing section, although the complex archimedean factors of 7 are now 
irrelevant. Then Fy is the compositum of all abelian extensions of F, 
i.e., it is the maximal abelian extension of F over A. The group Iy 

now consists of all principal ideals (a) such that aÇz*F is totally real 
and a —1 is divisible by co! for some infinite natural number œ. The 
group Cy/Iy, which is isomorphic to the Galois group of Fy/Fcan also 
be expressed in terms of the idèles of *F. However, the discussion of 
this and other topics which are evidently still required in order to 
complete the picture must be left for another occasion (compare [21 ]). 

While in the present section we have made effective use of infinite 
prime numbers or nonstandard prime ideals as elements of fields or of 
multiplicative groups, they have not, so far, occurred as divisors or as 
characteristics of fields. A simple application of infinite prime num-

-
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bers in this direction is as follows (see [16]). Suppose that a sentence 
X which is formulated in the Lower Predicate Calculus in terms of 
equality, addition, and multiplication is false for fields of arbitrarily 
high characteristic. Thus, the statement "for every natural number n 
there exists a prime number p>n such that X is false in a field of 
characteristic p" is true for the standard natural numbers and hence 
is true also in an enlargement. Choosing n infinite, we see that there 
is a field F of infinite characteristic p such that X is false in F. But 
when looked at from the outside, F is actually of characteristic 0 since 
it is not of any finite characteristic. We have proved the well-known 
result that if X is true for all fields of characteristic 0 then it is also 
true for all fields of characteristic p>po where p0 depends on X. 

A much deeper result which can be stated readily in terms of in­
finite primes is the famous theorem of Ax and Kochen. Let Fp be the 
prime (minimal) field of infinite prime characteristic p and let Fp{x) 
be the field of formal power series of x adjoined to Fp within an en­
largement. Thus, the subscripts of a series ]C*--<* anx

nE:Fp{x} range 
over the nonstandard integers of the enlargement. Let Tp be the field 
of £-adic numbers in the same enlargement. Then Fp{x} is elemen­
tarily equivalent to Fp with respect to the standard language of the 
Lower Predicate Calculus with a vocabulary for the field operations 
and for valuation in an ordered group. This is a rather elegant re­
formulation of the Ax-Kochen result, but the available methods of 
proof are based either on model theoretic methods [ l ] or on the 
elimination of quantifiers [3]. I t would be interesting to handle the 
problem effectively by nonstandard methods. 

7. Concluding remarks. As we have seen, our methods offer, in 
many cases, alternatives to familiar infinitary constructions and 
passages to the limit. I t is quite likely that a t some future date a 
deeper understanding of the structure of definitions and proofs will 
enable us to provide systematic translations from one framework to 
the other. And we may recall here that already Pascal and Leibniz 
maintained that the respective infinitesimal methods employed by 
them differed from the Greek method of exhaustion only in the 
manner of speaking. Coming next to the mathematician's desire for 
obtaining an intuitive picture of his universe of discourse, the use of 
ultrapowers as representations of enlargements is entirely appropri­
ate, although even this does not lead to a categorical (unique) en­
largement except by means of artificial restrictions. Beyond that, the 
use of ultrapowers (see Theorem 5.5) or of other special models (see 
Luxemburg's result quoted in §3 above) may actually be required in 
order to prove particular propositions. 
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As far as the results of the present paper on algebraic number fields 
are concerned, the argument a t the end of §3 shows that they all 
remain true in an ultrapower on a countable index set for a free ultra-
filter. Within this framework, the infinite numbers and ideals may 
be regarded as just another kind of limit. Moreover, the procedure 
by which we obtain an ultrapower F^ from a countable direct product 
of fields FN can be combined into a single step with the further homo-
morphisms F0-~*Fo/Fi onto various completions of F. In particular, 
we may thus obtain the real numbers R by taking a countable direct 
power of the rational numbers QN and a free ultrafilter D on N. An 
element q~ {qn} SQN will be called finite if there exists a rational 
number r such that {n\ \qn\ <r] £Z). Let Ç0 be the set of finite ele­
ments of QN; then Q0 is a subring of QN. Let <2i be the set of infinitesi­
mal elements of QN

9 i.e., of elements g== {qn}, such that {n\ \qn\ <r] 
£ D for the positive rational numbers r. Then Q1CQ0 and Q\ is an 
ideal in Q0. The quotient ring Qo/Qi is isomorphic to the field of real 
numbers. In this way we obtain a procedure which bears a general 
similarity to the method of completion by Cauchy sequences but is 
quite different from it in detail. 

On the other hand, it would seem wasteful to give up the logical 
basis of our method altogether, for it alone provides the setting within 
which we may deduce the validity of statements in *M quite generally 
from their validity in M and vice versa. Without this setting, any 
property which is known to apply to M has to be established for *M 
separately in each case, and while this is certainly possible it has been 
contrary to good mathematical practice ever since the days of The-
aetetus. 

I t may be too early to say whether the methods of Nonstandard 
Analysis will ever become accepted (or "standard") tools of mathe­
matics. At any rate, it is remarkable that an idea which once formed 
the basis for most of the work in the Differential and Integral Cal­
culus and which was declared bankrupt one hundred years ago (after 
a long but admittedly fraudulent career) has, after all, enough vitality 
to make a meaningful contribution to a subject as far removed from 
its origins as the theory of algebraic number fields. 
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