EXTENSION OF VALUATION THEORY

BY MERLE E. MANIS

Communicated by David A. Buchsbaum, May 16, 1967

By a valuation on a commutative ring R with 1 we mean a pair (v, Γ) where Γ is an ordered (multiplicative) group with zero adjoined and v is a map from R onto Γ satisfying

- (1) v(xy) = v(x)v(y) for all $x, y \in R$,
- (2) $v(x+y) \le \max \{v(x), v(y)\}$ for all $x, y \in R$.

This generalizes the field concept; the insistence on "onto" is what allows us to generalize the main field theorems.

PROPOSITION 1. Let A be a subring of a ring R, P a prime ideal of A. Then the following are equivalent:

- (1) For each subring B of R and prime ideal Q of B with $A \subset B$, $Q \cap A = P$, one has A = B.
 - (2) For $x \in R \setminus A$ there exists a $y \in P$ with $xy \in A \setminus P$.
 - (3) There is a valuation (v, Γ) on R with

$$A = \{x \in R \mid v(x) \le 1\}, \quad P = \{x \in R \mid v(x) < 1\}.$$

We call pairs (A, P) satisfying the three equivalent conditions valuation pairs.

PROPOSITION 2. The valuations (v, Γ) and (w, Λ) determine the same valuation pair (A, P) if and only if there is an order isomorphism ϕ of Γ onto Λ such that $w = \phi \circ v$.

Let the valuation (v, Γ) determine the valuation pair (A, P). Then an ideal \mathfrak{A} of A is called v-closed if $x \in \mathfrak{A}$, $y \in R$ and $v(y) \leq v(x)$ implies $y \in \mathfrak{A}$.

PROPOSITION 3. The v-closed ideals of A are linearly ordered by inclusion. The v-closed prime ideals are in 1-1 correspondence with the isolated subgroups of Γ . If $\phi: \Gamma \rightarrow \Gamma/\Sigma$ is the natural map with Σ an isolated subgroup of Γ , then the v-closed prime ideal corresponding to Σ is the ideal of the valuation pair determined by the valuation $(\phi \circ v, \Gamma/\Sigma)$.

Independence and dominance of valuations are defined as in [5] and the "same" computational lemmas are obtained.

Let R be a ring extension of a ring K, (v_0, Γ_0) a valuation on K. By an extension of (v_0, Γ_0) to R we mean a valuation (v, Γ) on R and an order isomorphism ϕ of Γ_0 into Γ such that $v(x) = \phi \circ v_0(x)$ for all $x \in K$.

PROPOSITION 4. A valuation (v_0, Γ_0) on K has extensions to R if and only if $R \mathfrak{A} \cap K \subset \mathfrak{A}$ where $\mathfrak{A} = \{x \in K | v_0(x) = 0\}$.

For the remainder of this announcement we assume that R is an integral extension of K and (v_0, Γ_0) is a valuation on K. If (v, Γ) is an extension of (v_0, Γ_0) we identify and get $\Gamma_0 \subset \Gamma$.

PROPOSITION 5. The following hold:

- (1) (v_0, Γ_0) has extensions to R,
- (2) Γ/Γ_0 is torsion for any extension (v, Γ) of (v_0, Γ_0) ,
- (3) Given $x \in R$ there is an $x' \in R$ such that v(xx') = 1 for all extensions (v, Γ) of (v_0, Γ_0) with $v(x) \neq 0$.

PROPOSITION 6. Let (v_i, Γ_i) be pairwise independent extensions of (v_0, Γ_0) and α_i nonzero elements of Γ_i , $i = 1, 2, \dots, n$. Then there is an $x \in R$ such that $v_i(c) = \alpha_i$ for each i.

For (v, Γ) an extension of (v_0, Γ_0) , define e_v to be the index of Γ_0 in Γ and f_v be the rank of A/P over A_0/P_0 , where (A, P) is the valuation pair determined by (v, Γ) and (A_0, P_0) the valuation pair determined by (v_0, Γ_0) . Let n be the rank of $R/R\mathfrak{A}$ over K/\mathfrak{A} , where $\mathfrak{A} = \{x \in K | v_0(x) = 0\}$.

PROPOSITION 7. Let (v_i, Γ_i) , $i = 1, 2, \dots, r$, be extensions of (v_0, Γ_0) which determine distinct valuation pairs. Then $\sum_{i=1}^{r} e_{v_i} f_{v_i} \leq n$.

Results and definitions when R is a Galois extension of K are almost identical to those for fields as in [5], including the classical.

PROPOSITION 8. efg $\pi^d = n$, where $e = e_v$, $f = f_v$ for any extension (v, Γ) of (v_0, Γ_0) ; g is the number of extensions of (v_0, Γ_0) ; π is the characteristic of the residue ring A_0/P_0 if this is prime, 1 otherwise; d is a nonnegative integer; and n is the number of elements in a Galois group for R over K.

BIBLIOGRAPHY

- 1. N. Bourbaki, Algebra commutative, Chapter 5, 6, Hermann, Paris, 1964.
- 2. S. Chase, D. K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc., No. 52, 1965.
- **3.** D. K. Harrison, Finite and infinite primes in rings and fields, Mem. Amer. Math. Soc., No. 68, 1967.
- 4. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- 5. O. Zariski and P. Samuel, *Commutative algebra*, Vol. II, Van Nostrand, New York, 1960.

University of Oregon and University of Montana