INVOLUTIONS OF HOMOTOPY SPHERES AND HOMOLOGY 3-SPHERES

BY SANTIAGO LÓPEZ DE MEDRANO

Communicated by William Browder, May 18, 1967

1. Introduction. Let Σ^{4n+3} be a homotopy sphere and $T: \Sigma \to \Sigma$ a fixed point free differentiable involution. A characteristic submanifold for T is a smoothly embedded submanifold $W^{4n+2} \subset \Sigma$, such that $W = A \cap TA$, $\Sigma = A \cup TA$, where A is a compact submanifold of Σ , $\partial A = W$. Let $i: W \to A$ be the inclusion, and $K = \ker i_*$, $i_*: H_{2n+1}(W) \to H_{2n+1}(A)$. The symmetric bilinear pairing $K \otimes K \to \mathbb{Z}$ defined by $x \otimes y \to x \cdot T_* y$ is called the quadratic form of T with respect to W, and its signature is denoted by $\sigma(T, \Sigma)$. It is proved in [2] that $\sigma(T, \Sigma)$ does not depend on the characteristic submanifold, and that for n > 0, $\sigma(T, \Sigma) = 0$ if and only if Σ contains an invariant smoothly embedded S^{4n+2} . These definitions can be made in the p.l. category and the corresponding properties hold. $\sigma(T, \Sigma)$ can also be defined when Σ is a homology sphere.

It is the purpose of this paper to give examples of involutions with $\sigma(T, \Sigma) \neq 0$.

2. We will make use of the following construction: Let M^n be a smooth manifold, and $T: \partial M \to \partial M$ a smooth involution. Consider another copy M^* of M, and the manifold $M' = M \cup_T M^*$, obtained from the disjoint union of M and M^* by identifying $T(x) \in \partial M$ with $x^* \in \partial M^*$. Then an involution $T': M' \to M'$ can be defined by $T'(x) = x^*$, $T'(x^*) = x$. $T' \mid \partial M = T$ and T' is fixed point free if and only if T is.

We will denote by U the square matrix with 1's in the nonprincipal diagonal and 0's elsewhere.

Let H be a $2k \times 2k$ integral matrix. We will consider the following conditions on H:

- (i) det $H = \pm 1$.
- (ii) There exist $2k \times 2k$ integral matrices P, Q, such that $H = PUP^t QUQ^t$.
 - (iii) PQ^t is symmetric.
 - (iv) PQ^t has even integers in the main diagonal.
- 3. Theorem 1. If H satisfies conditions (i)–(iv), then H can be realized as the matrix of the quadratic form of a fixed point free differentiable involution of a homotopy (4n+3)-sphere, n>0.

THEOREM 1'. If H satisfies conditions (i)-(iii), then H can be realized as the matrix of the quadratic form of a fixed point free involution of a homology 3-sphere.

PROOF. Let W^{4n+2} be the connected sum of 2k copies of $S^{2n+1} \times S^{2n+1}$, and $\alpha_1, \dots, \alpha_{2k}, \beta_1, \dots, \beta_{2k}$ the standard basis of $H_{2n+1}(W)$. The matrix of intersection numbers with respect to this basis is

$$\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$
.

There is a fixed point free differentiable involution $T: W \to W$ such that the matrix of $T_*: H_{2n+1}(W) \to H_{2n+1}(W)$ with respect to α_i , β_i is U. This can be seen by considering the antipodal map in S^{4n+3} and exchanging handles in S^{4n+2} , or by applying the construction described in §2 to the connected sum of k copies of $S^{2n+1} \times S^{2n+1}$, with a disc removed, and the antipodal map in its boundary.

Consider the basis

$$\alpha'_i = \sum p_{ij}\alpha_j + \sum q_{ij}\beta_j, \quad \beta'_i = \sum r_{ij}\alpha_j + \sum s_{ij}\beta_j$$

where $(p_{ij}) = P$, $(q_{ij}) = Q$ are the matrices given by (ii), and $(r_{ij}) = R = H^{-1}QU$, $(s_{ij}) = S = H^{-1}PU$. The matrix of intersection numbers with respect to this new basis is

(1)
$$\binom{P}{R} \binom{Q}{S} \binom{0}{-I} \binom{I}{0} \binom{P}{R} \binom{Q}{S}^{t} = \binom{0}{-I} \binom{I}{0}$$

as a result of conditions (ii) and (iii). This shows also that α'_i , β'_i is really a basis. The matrix of T_* with respect to α'_i , β'_i is

(2)
$$\begin{pmatrix} P & Q \\ R & S \end{pmatrix} \begin{pmatrix} 0 & U \\ U & 0 \end{pmatrix} \begin{pmatrix} P & Q \\ R & S \end{pmatrix}^{-1} = \begin{pmatrix} 0 & H \\ H^{-1} & 0 \end{pmatrix}.$$

A function $\phi: H_{2n+1}(W) \to Z_2$ can be defined [3], such that $\phi(x) = 0$ if and only if framed surgery can be performed on an embedded sphere representing x, and has the property

$$\phi(x+y) = \phi(x) + \phi(y) + x \cdot y.$$

Therefore

$$\phi(\alpha_i^{(i)}) = \phi(\sum p_{ij}\alpha_j) + \phi(\sum q_{ij}\beta_j) + (\sum p_{ij}\alpha_j) \cdot (\sum q_{ij}\beta_j)$$
$$= 0 + 0 + \sum p_{ij}q_{ij}$$

is the *i*th diagonal element of PQ^{i} , which is 0 mod 2 by condition (iv).

Therefore we can do surgery on the elements α_i' to obtain a framed cobordism between W and a homotopy sphere, which must be diffeomorphic to S^{4n+2} since it bounds a π -manifold [3]. Attaching a disc to this sphere, we obtain a differentiable manifold V such that $\partial V = W$, $\pi_1(V) = 0$, $\tilde{H}_i(V) = 0$, $i \neq 2n+1$, $H_{2n+1}(V)$ is free on 2k generators b_1, \dots, b_{2k} and $i_*: H_{2n+1}(W) \to H_{2n+1}(V)$ is given by $\alpha_i' \to 0$, $\beta_i' \to b_i$.

Applying to V, $T: W \rightarrow W$, the construction described in §2, we obtain a manifold $\Sigma^{4n+3} = V \cup_T V^*$ and an involution $T': \Sigma \rightarrow \Sigma$. $\pi_1(\Sigma) = 0$, and it follows from the Mayer-Vietoris sequence of $(\Sigma; V, V^*)$ that Σ is a homotopy sphere, since the only nontrivial part is

$$0 \to H_{2n+2}(\Sigma) \to H_{2n+1}(W) \to H_{2n+1}(V) \oplus H_{2n+1}(V^*) \to H_{2n+1}(\Sigma) \to 0$$

$$(i_*, i_*T_*) \qquad \aleph$$

$$H_{2n+1}(V) \oplus H_{2n+1}(V)$$

and (i_*, i_*T_*) has, with respect to the bases α_i' , β_i' and $(b_i, 0)$, $(0, b_i)$, the matrix

$$\begin{pmatrix} 0 & H \\ I & 0 \end{pmatrix}$$

and is an isomorphism by condition (i).

W is a characteristic submanifold for T', K is the subgroup generated by the α'_i , and the matrix $(\alpha'_i \cdot T_*\alpha'_i) = H$.

For n=0, the matrix

$$\begin{pmatrix} P & Q \\ R & S \end{pmatrix}$$

can be lifted to an automorphism of $\pi_1(W)$, since it satisfies (1) (see [5, pp. 177–178 and 355–356]), and therefore, by Nielsen's Theorem [7, p. 266], it can be realized by a homeomorphism $h: W \rightarrow W$. Therefore we can take V to be the solid torus of genus 2k, with the involution hTh^{-1} on its boundary, and the rest of the proof follows as before.

4. PROPOSITION. For all $i \in \mathbb{Z}$ there exists a matrix H satisfying (i)-(iv), with $\sigma(H) = 8i$.

We give here a simple proof of the existence of such matrices with $\sigma(H) = 32i$. To get all multiples of 8, a more elaborate argument is needed, which uses methods developed in [8].

If H is any symmetric matrix with even integers in the main diagonal and det $H = \pm 1$, then

$$H' = \left[egin{array}{cccc} H & 0 & 0 & 0 \ 0 & UHU & 0 & 0 \ 0 & 0 & H & 0 \ 0 & 0 & 0 & UHU \end{array}
ight]$$

satisfies (i)–(iv), by writing $H = X + X^t$, and taking

$$P = \left(\begin{array}{cccc} 0 & XU & I & 0 \\ UX^i & 0 & 0 & I \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right), \quad Q = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ I & 0 & 0 - XU \\ 0 & I - UX^i & 0 \end{array} \right).$$

In this case $PQ^t = 0$, and since the signature of H can be any multiple of 8 [6], the signature of H' can be any multiple of 32.

THEOREM 2. For all n>0, and all $i\in \mathbb{Z}$, there is a fixed point free differentiable involution $T_i: \Sigma_i^{4n+3} \to \Sigma_i^{4n+3}$ of a homotopy sphere Σ_i^{4n+3} , such that $\sigma(T_i, \Sigma_i) = 8i$.

THEOREM 2'. For all $i \in \mathbb{Z}$ there is a fixed point free involution $T_i: \Sigma_i^3 \to \Sigma_i^3$ of a homology 3-sphere Σ_i^3 , such that $\sigma(T_i, \Sigma_i^3) = 8i$.

COROLLARY 1. For n>0, there exists infinitely many differentiable manifolds, homotopy equivalent to P^{4n+3} , no two of which are p.l. homeomorphic.¹

COROLLARY 2. There exist infinitely many different irreducible 3-manifolds with the same homology as P^3 .

5. Final remarks. If one of the homology spheres Σ_i^3 , $i \neq 0$, given by Theorem 2' is simply connected, then, by a theorem of Livesay [4], it would be a counterexample to the Poincaré conjecture.

If in the examples given by Theorem 2 we take the quotient spaces, we can form a diagram

$$\Sigma_{i}^{4n+3}/T_{i} \xrightarrow{f} P^{4n+3}$$

$$\bigcup \qquad \qquad \bigcup$$

$$W/T \xrightarrow{g} P^{4n+2}$$

where f is a homotopy equivalence, f is transverse regular to P^{4n+2} and

 $^{^1}$ C. T. C. Wall announced this result at the International Congress of Mathematicians, Moscow, 1966. Montgomery and Yang have recently obtained another proof of Theorem 2 for n=1.

 $W/T = f^{-1}(P^{4n+2})$. Then, if $i \neq 0$, it is impossible to do surgery on W/T inside Σ_i/T_i to make g a homotopy equivalence, although the surgery can be done in abstract. (Compare with [1].)

It can be shown that this situation cannot occur in the case of involutions of homotopy (4n+1)-spheres, or in the surgery problems that arise in proving uniqueness of desuspension [2]. Therefore, the method given in this paper cannot be used to realize any of the other obstructions defined in [2].

REFERENCES

- 1. W. Browder, Embedding 1-connected manifolds, Bull. Amer. Math. Soc. 72 (1966), 225-231.
- 2. W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 243-245.
- 3. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math 77 (1963), 504-537.
- 4. G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
- 5. W. Magnus, A. Karrass and D. Solitar, *Combinatorial group theory*, Interscience, New York, 1966.
- **6.** J. Milnor, On simply connected 4-manifolds, Symposium Internacional de Topologia Algebraica, Mexico 1958, pp. 122–128.
- 7. J. Nielsen, Untersuchungen zur Topologie der Geschlossenen Zweiseitigen Flächen, Acta Math. 50 (1924), 189-358.
- 8. C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276.

PRINCETON UNIVERSITY,

Universidad Nacional Autónoma de México and INIC