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1. Introduction. In this paper, I determine the structure of any 
C*-algebra generated by an isometry. Using a theorem of Halmos 
[3], the problem is reduced to the study of C*-algebras d(A) gener­
ated by A and A * where (i) A is unitary, (ii) A = Sa with Sa the shift 
of multiplicity a, and (iii) A = W@Sa with W unitary. In case (i), the 
resulting algebra is isometrically ^isomorphic to the algebra C(<r(A)) 
of all complex-valued continuous functions on the spectrum of A and 
nothing more need be said. In cases (ii) and (iii), it turns out that 
Q(A) is isometrically *-isomorphic to &(Si) so that (%(A) is indepen­
dent of W and a. In each of these cases, there is a unique minimal 
closed two-sided ideal ó(A) such that Q(A)/$(A) is isometrically 
*-isomorphic to C(T), where T is the perimeter of the unit circle. The 
ideal $(A) is determined spatially in the cases A =Si and A = W®Si. 

We begin with the notation. For our purposes, all Hilbert spaces 
are complex and all ideals are closed and two-sided. If {en: w = 0, 1, 
2, • • • } is an orthonormal basis for a Hilbert space H then the shift 
S = S\ is defined by Sen**en+i. By a shift of multiplicity a is meant the 
a-fold direct sum 5 © S 0 • • • 0 5 acting on H@H® • • • @H. 
The orthogonal projection onto the one-dimensional subspace of H 
spanned by en is denoted by Pn. 

If H (or Hi) is a Hilbert space then (&(H) (or (R(Hi)) denotes the 
algebra of all bounded operators with the usual norm topology and 
3Z (or 5C») denotes the ideal of all compact operators. The natural quo­
tient map from (B(JE?) to (R(H)/K ((B(£T»-) to (B(jff<)/5C.-) is given by 
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T (wi). If A is an operator in (B(iï), the C*-algebra generated by A will 
be named ®(A) or just $ when there is no possible doubt about A, An 
operator A is called a Fredholm operator if w(A) is invertible. The set 
of all Fredholm operators in (B(iJ) is denoted by 9\ I t is known [l] 
that A is in 5 if and only if A has closed range and finite-dimensional 
null and defect spaces. 

2. The algebra (&(S). Our first object is to determine the ideals of 
Ofc(S). For vectors y and z in H, we define the operator TV)Z by 

I t is well known that the smallest closed subspace of (B(iJ) containing 
all TytZ is just 3C. 

THEOREM 1. The algebra d(S) contains the full ideal of compact 
operators 3C and ZZQâfor every nontrivial ideal $ in d(S). 

PROOF. Since 1 — SS* = P 0 is in 3C, we see that ®r\X is a nontrivial 
ideal in <2. Now suppose that ó is any nontrivial ideal in Ö-. If A 3^0 is 
in â then A*A is also in tf. For some N^O we have |[-4ejv|| 5^0. Since 
SmP0S

m*=Pm, we see that Pm is in a for all m^O. Hence PNA*APN 

is in 6. But 

PNA* APN% = (^4* APN%, eN)eN 

= 0 , J W * AeN)eN = ||-4etf||2ZV*; 

so P # is in £T and thus S*NPNSN~P0 is in 0. 
Now given any e > 0 and y in H there is a polynomial p (x) so that 

\\p(S)e0— y\\ <€. I t follows that the operator Ty>eQ has the property 
that \\Po[p(S)]*-Ty>eo\\<e. Thus, Ty,eo is in éf. Similarly, if z is in ÜT 
then there is a polynomial q(x) with flîCSVo —*|| <e and \\q(S)Tv,eo 

— r y , J | <€||y|[ so that for all y, z, TVtZ is in Ó. I t follows that é contains 
all finite rank operators and hence 3CC^.D 

As immediate consequences of Theorem 1 we have two well-known 
results. 

COROLLARY 1.1. The algebra &(S) is dense in (&(H) with the strong 
topology. 

PROOF. 3C is strongly dense in & ( # ) . • 

COROLLARY 1.2. The shift S has no reducing subspaces except the 
trivial ones (0) and H. 

PROOF. Otherwise, by Corollary 1.1 there would be a proper sub-
space invariant under all the operators in <£(iï).ö 
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We can now complete the ideal theory for CL (S). 

THEOREM 2. The algebra Ct(5)/3C is ^-isomorphic and isometric to 
C(T). 

PROOF. Since 5*5 — 5 5 * = P 0 is in 3C, it is apparent that CE/5C is an 
abelian C*-algebra. Hence Cfc/3C is *-isomorphic and isometric to C(X) 
where X is the maximal ideal space of 0&/3C. Now Gt/3C is generated by 
7r(5) and 7r(5*) so X is homeomorphic to the spectrum of T(S) in 6fc/3C. 
By a theorem in [2], the spectrum of TT(5) in Ct/5C is the set {X: 5—X 
is not in $} and an elementary computation shows that this set is just 
the perimeter of the unit circle T. • 

Theorems 1 and 2 determine the structure of the ideals of Cfc(S) 
since the ideal theory for C(T) is well known. 

3. The algebra QL(W@S). The next part of the program is to deter­
mine the structure of Q,(W®S) where W is a unitary operator on Hi 
and 5 is the shift on H2 with Hi@H2~H. We require a Lemma which 
may be of some intrinsic interest. 

LEMMA. If A ®B is in a(W®S) then \\A\\ S\\T2(B)\\ ^\\B\\. 

PROOF. There is a sequence of "polynomials" in two noncommuting 
"indeterminates, " 

. / \ \-*i (n) »i t 2 »3 ik 

pn{oc,y) =Zs Ö < I W . . . . < * « y % • • -y y 

such that pn(W, W*)—>A and pn(S, S*)->B in the operator norm 
topology. Thus 

Pn(7T2(S), 7T2(S*)) "> 7T2(£) 

since 7r2 is norm-decreasing. Now applying the Gelfand transform 
to the abelian C*-algebra generated by 7r2(5), we see that 
sup xe:r| Pn(K, X) | -^||7T2(^)|| since the spectrum of 7r2(5) in d(S)/3Z2 is 
T and the Gelfand transform is an isometry. On the other hand, ap­
plying the Gelfand transform to the C*-algebra generated by W, we 
see that sup \^a(W) Pn (X, X) | ->m| | . Since d{W)CTi the desired 
result follows. D 

THEOREM 3. The algebra d(W@S) is isometrically ^-isomorphic to 
Gt(S) under the mapping W®S<r*S. 

PROOF. The mapping W®S —> 5 extends to the "polynomials" 
described in the Lemma. The extension is clearly a *-homorphism. If 
p(x, y) is such a "polynomial" then 

Wp(W, W*) 0 p(S,S*)\\ = max(\\p(W} W*)\\, \\p(S,S*)\\). 



1967] THE CVALGEBRA GENERATED BY AN ISOMETRY 725 

But by the Lemma, \\p(W, W*)\\ g\\p(S, S*)\\ so 

\\p(W,W*)@p(S,S*)\\ =\\p(S,S*)\\. 

Hence, the mapping extends to an isometry from ®(W@S) onto a(S) 
which is also a *~isomorphism. • 

COROLLARY 3.1. The algebra (&(W®S) has a unique minimal 
nontrivial ideal, ó(W®S), and a(W®S)/ó(W®S)^C(T). 

PROOF. This follows from the properties of d(S) established in 
Theorems 1 and 2.Q 

I t is of some interest to determine the minimal ideal 3(W@S) spa­
tially. This can be done in a manner similar to Theorem 1. 

THEOREM 4. The minimal nontrivial ideal 0(W®S) in d(W®S) is 

ó(w ©s) = o©3c2 = 3cn a(w © s). 

PROOF. Since 

(W* © S*)(PF © S) - (W © S)(W* © S*) = 0 © Po, 

we see that 3CHö is a nontrivial ideal in d. Now suppose Ó is any 
nontrivial ideal. By the Lemma, if C©D is a nonzero element of é 
then DT^O. Hence, for some ON in the basis {en: n — 0, 1, 2, • • • } for 
H2, we have H^AT|| 5^0. The argument that 0 © 3 C 2 O now finishes as 
in the proof of Theorem 1. Further, if C®D is in 3CP\G, then C is in 
3Ci and D is in 5C2. I t follows from the Lemma that ||C|| = 0 so that 

4. The general case. For the case A an arbitrary isometry, the 
algebra Q,(A) can now be determined. Using a decomposition due to 
Halmos [3], any isometry A on H is either (i) unitary, (ii) unitarily 
equivalent to a shift Sa of multiplicity a, or (iii) unitarily equiva­
lent to a direct sum W®Sa where W is unitary. In the first case, 
(1(A) is isometrically *-isomorphic to C(a(A)). In case (ii), the map­
ping S*->Sa induces an isometric *-isomorphism between Ct(̂ 4) and 
d(S) so the theory of §2 carries over to <&(A). In case (iii), the 
mapping 

W © S <-> W © Sa 

induces an isometric *-isomorphism between d(A) and d(W®S) so 
the theory of §3 carries over to Q,(A). In cases (ii) and (iii), ®(A) 
~G,(S) and there is a unique minimal ideal a(A)?*0 with ®(A)/é(A) 
==,C(T). Thus the algebraic structure is independent of PFand ce. 

One can hope that knowing the ideals of ®(A) makes possible a 
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classification of the "^representations oi 0(A). In fact, the representa­
tion theory for O (S) can be handled by use of Theorem 1 and stan­
dard results on representations of (B(i7) and 3C. In particular, using 
results from [4, p. 296] we see that every representation of O(S) is a 
direct sum of identity representations and representations of C(T). 
Using the fact that for A an isometry, either 0(A) ~C (a (A)) or 
0(A) ^O(S), the "^representations for 0(A) can now be determined. 
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