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1. Introduction. In this paper, I determine the structure of any
C*-algebra generated by an isometry. Using a theorem of Halmos
[3], the problem is reduced to the study of C*-algebras @(4) gener-
ated by 4 and 4* where (i) 4 is unitary, (ii) 4 =S, with S, the shift
of multiplicity e, and (iii) 4 = W& .S, with W unitary. In case (i), the
resulting algebra is isometrically *-isomorphic to the algebra C(a(4))
of all complex-valued continuous functions on the spectrum of 4 and
nothing more need be said. In cases (ii) and (iii), it turns out that
@ (4) is isometrically *-isomorphic to @(S;) so that @(4) is indepen-
dent of W and «. In each of these cases, there is a unique minimal
closed two-sided ideal 9(4) such that @(4)/9(4) is isometrically
*-isomorphic to C(T), where T is the perimeter of the unit circle. The
ideal 9(4) is determined spatially in the cases 4 =S; and A =W S:.

We begin with the notation. For our purposes, all Hilbert spaces
are complex and all ideals are closed and two-sided. If {en: n=0, 1,
2, + + - } is an orthonormal basis for a Hilbert space H then the shift
S=3S, is defined by Se, =e€,41. By a shift of multiplicity « is meant the
oa-fold direct sum S®&S® - - - &S acting on HGHSD - - - & H.
The orthogonal projection onto the one-dimensional subspace of H
spanned by e, is denoted by P,.

If H (or H;) is a Hilbert space then B(H) (or B(H;)) denotes the
algebra of all bounded operators with the usual norm topology and
& (or &;) denotes the ideal of all compact operators. The natural quo-
tient map from ®(H) to ®(H)/X (B(H,) to B(H,)/X;) is given by
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w (ms). If 4 is an operator in B(H), the C*-algebra generated by 4 will
be named @(4) or just @ when there is no possible doubt about 4. An
operator 4 is called a Fredholm operator if 7(4) is invertible. The set
of all Fredholm operators in ®(H) is denoted by %. It is known [1]
that 4 is in & if and only if 4 has closed range and finite-dimensional
null and defect spaces.

2. The algebra @(S). Our first object is to determine the ideals of
@(S). For vectors y and z in H, we define the operator Ty, by

Tyo(x) = (x,y)z.

It is well known that the smallest closed subspace of &(H) containing
all T, is just X.

THEOREM 1. The algebra Q(S) contains the full ideal of compact
operators X and X C9 for every nontrivial ideal 9 in Q(S).

Proor. Since 1 —SS*=P,is in X, we see that @M X is a nontrivial
ideal in @. Now suppose that J is any nontrivial ideal in @. If 4 0 is
in g then A*4 is also in 9. For some N=0 we have || 4ex|| #0. Since
SmPSm* =P, we see that P, is in @ for all »=0. Hence PyA*APx
is in 4. But

PNA* APNx = (A* APNx, eN)eN
= (x, PNA* AeN)eN = ||AeN”2PNx;

so Py isin g and thus S*¥ Py SN =P,isin 4.

Now given any €>0 and v in H there is a polynomial p(x) so that
lp(S)es—7y|| <e. It follows that the operator Ty, has the property
that || Po[p(S)]*—Ty..| <e. Thus, Ty,., is in 9. Similarly, if z is in H
then there is a polynomial ¢(x) with Hq(S)eo——z“ <e and Hg(S)T,,,eo
—T,.]| <¢|9]| so that for all y, 2, T}, is in 4. It follows that 4 contains
all finite rank operators and hence % C4d.[]

As immediate consequences of Theorem 1 we have two well-known
results.

CoRroOLLARY 1.1. The algebra G(S) is dense in B(H) with the strong
topology.

ProoF. & is strongly dense in ®(H).[]

CoRrROLLARY 1.2. The shift S has no reducing subspaces except the
trivial ones (0) and H.

Proor. Otherwise, by Corollary 1.1 there would be a proper sub-
space invariant under all the operators in ®(H).[]
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We can now complete the ideal theory for G (S).

THEOREM 2. The algebra G(S)/ XK is *-isomorphic and isomeiric to
Cc(T).

Proor. Since S*S—SS* =P, is in &, it is apparent that @/X is an
abelian C*-algebra. Hence @/ X is *-isomorphic and isometric to C(X)
where X is the maximal ideal space of @/%. Now @/ X is generated by
7(S) and 7(S*) so X is homeomorphic to the spectrum of 7 (S) in @/ X.
By a theorem in [2], the spectrum of 7(S) in @/X is the set {A: S—\
is not in SF} and an elementary computation shows that this set is just
the perimeter of the unit circle T".[]

Theorems 1 and 2 determine the structure of the ideals of ®(S)
since the ideal theory for C(T) is well known.

3. The algebra (W ®.S). The next part of the program is to deter-
mine the structure of @ (W@ S) where W is a unitary operator on H;
and S is the shift on H, with H;® H,=H. We require a Lemma which
may be of some intrinsic interest.

LemMA. If A® B isin Q(WO.S) then || 4| =||m(B)| | B

Proor. There is a sequence of “polynomials” in two noncommuting
“indeterminates,”
(n) t] t2 ¢ [ 72
Pu(®,9) =20 Qi 0% Y X Yy
such that p,(W, W*)—4 and p,(S, S*)—B in the operator norm
topology. Thus

Pa(w2(S), m2(S*)) — m2(B)

since mp is norm-decreasing. Now applying the Gelfand transform
to the abelian C*-algebra generated by m(S), we see that
sup RGTI PN\, N) I ——>H7r2(B)H since the spectrum of m(S) in @(S)/XK. is
T and the Gelfand transform is an isometry. On the other hand, ap-
plying the Gelfand transform to the C*-algebra generated by W, we
see that sup re.om |p,,()\, X)[—-)HAH. Since o(W)CT, the desired
result follows.[]

THEOREM 3. The algebra G(W®.S) is isometrically *-isomorphic to
@Q(S) under the mapping W S—S.

ProoF. The mapping W®.S — S extends to the “polynomials”
described in the Lemma. The extension is clearly a *-homorphism. If
p(x, ) is such a “polynomial” then

lp(w, w*) @ p(S, M| = max(|p(W, W), [|2(S, S|)).
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But by the Lemma, ||p(W, W*)|| <||5(S, S*)|| so
l2w, W% & (S, 59| = ||2(s, %)|l-

Hence, the mapping extends to an isometry from @(W@®.S) onto G(S)
which is also a *-isomorphism.[]

CororLLARY 3.1. The algebra G(W®S) has a unique minimal
nontrivial ideal, S(W®S), and (W S)/9(WdS)=C(T).

Proor. This follows from the properties of @(S) established in
Theorems 1 and 2.[]

It is of some interest to determine the minimal ideal 9(W&.S) spa-
tially. This can be done in a manner similar to Theorem 1.

THEOREM 4. The minimal nontrivial ideal (WD .S) in (WDS) s
IMWRS) =0 Ke=KN AW D S).
Proor. Since
W*e S (W eS) — (WS (W D S*) =00 P,

we see that /M@ is a nontrivial ideal in @. Now suppose g is any
nontrivial ideal. By the Lemma, if C®D is a nonzero element of 4
then D#0. Hence, for some ey in the basis {e,,: n=0,1,2,.-: } for
H,, we have || Dey|| 0. The argument that 0@ %,C¢ now finishes as
in the proof of Theorem 1. Further, if C®D is in N @ then C is in
%1 and D is in %K. It follows from the Lemma that ||C|| =0 so that
0D Ke=XKNQ.[]

4. The general case. For the case 4 an arbitrary isometry, the
algebra @(4) can now be determined. Using a decomposition due to
Halmos [3], any isometry 4 on H is either (i) unitary, (i) unitarily
equivalent to a shift .S, of multiplicity e, or (iii) unitarily equiva-
lent to a direct sum W@®.S, where W is unitary. In the first case,
@(4) is isometrically *-isomorphic to C(a(4)). In case (ii), the map-
ping S<»S, induces an isometric *-isomorphism between @(4) and
@(S) so the theory of §2 carries over to @(4). In case (iii), the
mapping

WeSeW oS,

induces an isometric *-isomorphism between @(4) and @(W®.S) so
the theory of §3 carries over to @(4). In cases (ii) and (iii), @(4)
2 @®(S) and there is a unique minimal ideal 9(4) 0 with @(4)/9(4)
=~ C(T). Thus the algebraic structure is independent of W and a.

One can hope that knowing the ideals of @(4) makes possible a
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classification of the *-representations of @(4). In fact, the representa-
tion theory for @(S) can be handled by use of Theorem 1 and stan-
dard results on representations of @(H) and X. In particular, using
results from [4, p. 296] we see that every representation of @(S) is a
direct sum of identity representations and representations of C(T).
Using the fact that for 4 an isometry, either @(4)=<C(s(4)) or
@(4)==a(S), the *-representations for @(4) can now be determined.

REFERENCES

1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat.
Sb. N.S,, (70) 28 (1951), 3-14.

2. L. A. Coburn and A. Lebow, Algebraic theory of Fredholm operators, J. Math.
Mech. 15 (1966), 577-584.

3. P. R. Halmos, Shifts on Hilbert space, J. Reine Angew. Math. 208 (1961), 102—
112.

4. M. A. Naimark, Normed rings, Noordhoff, Groningen, 1959.

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY



