- 5. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
- 6. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
- 7. T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of E^n yield E^n , Trans. Amer. Math. Soc. 122 (1966), 427-435.

THE UNIVERSITY OF WISCONSIN

THE C*-ALGEBRA GENERATED BY AN ISOMETRY¹

BY L. A. COBURN

Communicated by P. R. Halmos, April 24, 1967

1. Introduction. In this paper, I determine the structure of any C^* -algebra generated by an isometry. Using a theorem of Halmos [3], the problem is reduced to the study of C^* -algebras $\mathfrak{C}(A)$ generated by A and A^* where (i) A is unitary, (ii) $A = S_{\alpha}$ with S_{α} the shift of multiplicity α , and (iii) $A = W \oplus S_{\alpha}$ with W unitary. In case (i), the resulting algebra is isometrically *-isomorphic to the algebra $C(\sigma(A))$ of all complex-valued continuous functions on the spectrum of A and nothing more need be said. In cases (ii) and (iii), it turns out that $\mathfrak{C}(A)$ is isometrically *-isomorphic to $\mathfrak{C}(S_1)$ so that $\mathfrak{C}(A)$ is independent of W and α . In each of these cases, there is a unique minimal closed two-sided ideal $\mathfrak{I}(A)$ such that $\mathfrak{C}(A)/\mathfrak{I}(A)$ is isometrically *-isomorphic to C(T), where T is the perimeter of the unit circle. The ideal $\mathfrak{I}(A)$ is determined spatially in the cases $A = S_1$ and $A = W \oplus S_1$.

We begin with the notation. For our purposes, all Hilbert spaces are complex and all ideals are closed and two-sided. If $\{e_n: n=0, 1, 2, \cdots\}$ is an orthonormal basis for a Hilbert space H then the shift $S=S_1$ is defined by $Se_n=e_{n+1}$. By a shift of multiplicity α is meant the α -fold direct sum $S \oplus S \oplus \cdots \oplus S$ acting on $H \oplus H \oplus \cdots \oplus H$. The orthogonal projection onto the one-dimensional subspace of H spanned by e_n is denoted by P_n .

If H (or H_i) is a Hilbert space then $\mathfrak{B}(H)$ (or $\mathfrak{B}(H_i)$) denotes the algebra of all bounded operators with the usual norm topology and \mathfrak{K} (or \mathfrak{K}_i) denotes the ideal of all compact operators. The natural quotient map from $\mathfrak{B}(H)$ to $\mathfrak{B}(H)/\mathfrak{K}$ ($\mathfrak{B}(H_i)$ to $\mathfrak{B}(H_i)/\mathfrak{K}_i$) is given by

¹ Research supported by NSF Grant GP 5866.

 π (π_i). If A is an operator in $\mathfrak{B}(H)$, the C^* -algebra generated by A will be named $\mathfrak{A}(A)$ or just \mathfrak{A} when there is no possible doubt about A. An operator A is called a Fredholm operator if $\pi(A)$ is invertible. The set of all Fredholm operators in $\mathfrak{B}(H)$ is denoted by \mathfrak{F} . It is known [1] that A is in \mathfrak{F} if and only if A has closed range and finite-dimensional null and defect spaces.

2. The algebra $\alpha(S)$. Our first object is to determine the ideals of $\alpha(S)$. For vectors y and z in H, we define the operator $T_{y,z}$ by

$$T_{y,z}(x) = (x, y)z.$$

It is well known that the smallest closed subspace of $\mathfrak{B}(H)$ containing all $T_{y,z}$ is just \mathfrak{X} .

THEOREM 1. The algebra $\alpha(S)$ contains the full ideal of compact operators κ and $\kappa \subset s$ for every nontrivial ideal s in $\alpha(S)$.

PROOF. Since $1 - SS^* = P_0$ is in \mathcal{K} , we see that $\alpha \cap \mathcal{K}$ is a nontrivial ideal in α . Now suppose that β is any nontrivial ideal in α . If $A \neq 0$ is in β then A*A is also in β . For some $N \geq 0$ we have $||Ae_N|| \neq 0$. Since $S^m P_0 S^{m*} = P_m$, we see that P_m is in α for all $m \geq 0$. Hence $P_N A * A P_N$ is in β . But

$$P_N A^* A P_N x = (A^* A P_N x, e_N) e_N$$

= $(x, P_N A^* A e_N) e_N = ||A e_N||^2 P_N x;$

so P_N is in \mathcal{G} and thus $S^{*N}P_NS^N = P_0$ is in \mathcal{G} .

Now given any $\epsilon > 0$ and y in H there is a polynomial p(x) so that $\|p(S)e_0-y\| < \epsilon$. It follows that the operator T_{y,ϵ_0} has the property that $\|P_0[p(S)]^* - T_{y,\epsilon_0}\| < \epsilon$. Thus, T_{y,ϵ_0} is in $\mathfrak S$. Similarly, if z is in H then there is a polynomial q(x) with $\|q(S)e_0-z\| < \epsilon$ and $\|q(S)T_{y,\epsilon_0} - T_{y,z}\| < \epsilon \|y\|$ so that for all $y, z, T_{y,z}$ is in $\mathfrak S$. It follows that $\mathfrak S$ contains all finite rank operators and hence $\mathfrak K \subset \mathfrak S$. \square

As immediate consequences of Theorem 1 we have two well-known results.

COROLLARY 1.1. The algebra $\alpha(S)$ is dense in $\alpha(H)$ with the strong topology.

PROOF. K is strongly dense in $\mathfrak{B}(H)$.

COROLLARY 1.2. The shift S has no reducing subspaces except the trivial ones (0) and H.

PROOF. Otherwise, by Corollary 1.1 there would be a proper subspace invariant under all the operators in $\mathfrak{B}(H)$.

We can now complete the ideal theory for $\alpha(S)$.

THEOREM 2. The algebra $\mathfrak{A}(S)/\mathfrak{K}$ is *-isomorphic and isometric to C(T).

PROOF. Since $S^*S - SS^* = P_0$ is in \mathfrak{K} , it is apparent that $\mathfrak{C}/\mathfrak{K}$ is an abelian C^* -algebra. Hence $\mathfrak{C}/\mathfrak{K}$ is *-isomorphic and isometric to C(X) where X is the maximal ideal space of $\mathfrak{C}/\mathfrak{K}$. Now $\mathfrak{C}/\mathfrak{K}$ is generated by $\pi(S)$ and $\pi(S^*)$ so X is homeomorphic to the spectrum of $\pi(S)$ in $\mathfrak{C}/\mathfrak{K}$. By a theorem in [2], the spectrum of $\pi(S)$ in $\mathfrak{C}/\mathfrak{K}$ is the set $\{\lambda \colon S - \lambda \text{ is not in } \mathfrak{F}\}$ and an elementary computation shows that this set is just the perimeter of the unit circle $T. \square$

Theorems 1 and 2 determine the structure of the ideals of $\alpha(S)$ since the ideal theory for C(T) is well known.

3. The algebra $\mathfrak{C}(W \oplus S)$. The next part of the program is to determine the structure of $\mathfrak{C}(W \oplus S)$ where W is a unitary operator on H_1 and S is the shift on H_2 with $H_1 \oplus H_2 = H$. We require a Lemma which may be of some intrinsic interest.

LEMMA. If $A \oplus B$ is in $\alpha(W \oplus S)$ then $||A|| \le ||\pi_2(B)|| \le ||B||$.

PROOF. There is a sequence of "polynomials" in two noncommuting "indeterminates,"

$$p_n(x, y) = \sum a_{i_1 i_2 i_3 \dots i_k}^{(n)} x^{i_1} y^{i_2} x^{i_3} \dots y^{i_k},$$

such that $p_n(W, W^*) \rightarrow A$ and $p_n(S, S^*) \rightarrow B$ in the operator norm topology. Thus

$$p_n(\pi_2(S), \pi_2(S^*)) \longrightarrow \pi_2(B)$$

since π_2 is norm-decreasing. Now applying the Gelfand transform to the abelian C^* -algebra generated by $\pi_2(S)$, we see that $\sup_{\lambda \in T} |p_n(\lambda, \bar{\lambda})| \rightarrow ||\pi_2(B)||$ since the spectrum of $\pi_2(S)$ in $\mathfrak{C}(S)/\mathfrak{K}_2$ is T and the Gelfand transform is an isometry. On the other hand, applying the Gelfand transform to the C^* -algebra generated by W, we see that $\sup_{\lambda \in \sigma(W)} |p_n(\lambda, \bar{\lambda})| \rightarrow ||A||$. Since $\sigma(W) \subset T$, the desired result follows. \Box

THEOREM 3. The algebra $\mathfrak{A}(W \oplus S)$ is isometrically *-isomorphic to $\mathfrak{A}(S)$ under the mapping $W \oplus S \leftrightarrow S$.

PROOF. The mapping $W \oplus S \to S$ extends to the "polynomials" described in the Lemma. The extension is clearly a *-homorphism. If p(x, y) is such a "polynomial" then

$$\|p(W, W^*) \oplus p(S, S^*)\| = \max(\|p(W, W^*)\|, \|p(S, S^*)\|).$$

But by the Lemma, $\|p(W, W^*)\| \le \|p(S, S^*)\|$ so

$$\|p(W, W^*) \oplus p(S, S^*)\| = \|p(S, S^*)\|.$$

Hence, the mapping extends to an isometry from $\mathfrak{A}(W \oplus S)$ onto $\mathfrak{A}(S)$ which is also a *-isomorphism.

COROLLARY 3.1. The algebra $\mathfrak{A}(W \oplus S)$ has a unique minimal nontrivial ideal, $\mathfrak{s}(W \oplus S)$, and $\mathfrak{A}(W \oplus S)/\mathfrak{s}(W \oplus S) \cong C(T)$.

PROOF. This follows from the properties of $\alpha(S)$ established in Theorems 1 and 2.

It is of some interest to determine the minimal ideal $\mathfrak{I}(W \oplus S)$ spatially. This can be done in a manner similar to Theorem 1.

THEOREM 4. The minimal nontrivial ideal $\mathfrak{g}(W \oplus S)$ in $\mathfrak{A}(W \oplus S)$ is

$$\mathfrak{g}(W \oplus S) = 0 \oplus \mathfrak{K}_2 = \mathfrak{K} \cap \mathfrak{A}(W \oplus S).$$

Proof. Since

$$(W^* \oplus S^*)(W \oplus S) - (W \oplus S)(W^* \oplus S^*) = 0 \oplus P_0,$$

we see that $\mathcal{K} \cap \alpha$ is a nontrivial ideal in α . Now suppose \mathfrak{G} is any nontrivial ideal. By the Lemma, if $C \oplus D$ is a nonzero element of \mathfrak{G} then $D \neq 0$. Hence, for some e_N in the basis $\{e_n \colon n = 0, 1, 2, \cdots\}$ for H_2 , we have $||De_N|| \neq 0$. The argument that $0 \oplus \mathcal{K}_2 \subset \mathfrak{G}$ now finishes as in the proof of Theorem 1. Further, if $C \oplus D$ is in $\mathcal{K} \cap \alpha$ then C is in \mathcal{K}_1 and D is in \mathcal{K}_2 . It follows from the Lemma that ||C|| = 0 so that $0 \oplus \mathcal{K}_2 = \mathcal{K} \cap \alpha$. \square

4. The general case. For the case A an arbitrary isometry, the algebra $\alpha(A)$ can now be determined. Using a decomposition due to Halmos [3], any isometry A on H is either (i) unitary, (ii) unitarily equivalent to a shift S_{α} of multiplicity α , or (iii) unitarily equivalent to a direct sum $W \oplus S_{\alpha}$ where W is unitary. In the first case, $\alpha(A)$ is isometrically *-isomorphic to $C(\sigma(A))$. In case (ii), the mapping $S \leftrightarrow S_{\alpha}$ induces an isometric *-isomorphism between $\alpha(A)$ and $\alpha(S)$ so the theory of §2 carries over to $\alpha(A)$. In case (iii), the mapping

$$W \oplus S \leftrightarrow W \oplus S_a$$

induces an isometric *-isomorphism between $\mathfrak{A}(A)$ and $\mathfrak{A}(W \oplus S)$ so the theory of §3 carries over to $\mathfrak{A}(A)$. In cases (ii) and (iii), $\mathfrak{A}(A) \cong \mathfrak{A}(S)$ and there is a unique minimal ideal $\mathfrak{I}(A) \neq 0$ with $\mathfrak{A}(A)/\mathfrak{I}(A) \cong C(T)$. Thus the algebraic structure is independent of W and A.

One can hope that knowing the ideals of $\alpha(A)$ makes possible a

classification of the *-representations of $\mathfrak{A}(A)$. In fact, the representation theory for $\mathfrak{A}(S)$ can be handled by use of Theorem 1 and standard results on representations of $\mathfrak{B}(H)$ and \mathfrak{K} . In particular, using results from [4, p. 296] we see that every representation of $\mathfrak{A}(S)$ is a direct sum of identity representations and representations of C(T). Using the fact that for A an isometry, either $\mathfrak{A}(A) \cong C(\sigma(A))$ or $\mathfrak{A}(A) \cong \mathfrak{A}(S)$, the *-representations for $\mathfrak{A}(A)$ can now be determined.

REFERENCES

- 1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. N.S., (70) 28 (1951), 3-14.
- 2. L. A. Coburn and A. Lebow, Algebraic theory of Fredholm operators, J. Math. Mech. 15 (1966), 577-584.
- 3. P. R. Halmos, Shifts on Hilbert space, J. Reine Angew. Math. 208 (1961), 102-112.
 - 4. M. A. Naimark, Normed rings, Noordhoff, Groningen, 1959.

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY