STRONG HOMOTOPY EQUIVALENCE OF 3-MANIFOLDS

BY D. R. McMILLAN, JR.1

Communicated by R. H. Bing, May 8, 1967

1. Introduction. Let M be a topological space and let X be a compact subset of M. After [2], we say that X has property UV^{∞} (or " $X \subset UV^{\infty}$ ") in M if for each open set $U \subset M$ such that $X \subset U$, there is an open set V such that $X \subset V \subset U$ and V is contractible to a point in U. It is known [2] that each finite-dimensional compact absolute retract (i.e., retract of a cell) has property UV^{∞} under some embedding in Euclidean space, and that if one embedding of a compact set X in a manifold has property UV^{∞} , then so does every embedding of X in a manifold.

Armentrout has shown (§10 of [2]) that if M^n and N^n are closed (i.e., compact and boundaryless) topological n-manifolds, and if f is a continuous mapping of M^n onto N^n such that $f^{-1}(y) \subset UV^{\infty}$ for each $y \subset N^n$, then f is a homotopy equivalence. We shall call such a mapping a strong homotopy equivalence of M^n onto N^n . If n=3 and if f is cellular (i.e., each set $f^{-1}(y)$ is cellular—and hence UV^{∞}), then he has shown [1] that M^3 and N^3 are homeomorphic. It is our purpose here to note that if there is a strong homotopy equivalence of M^3 onto N^3 , then M^3 and N^3 differ by only a finite number of homotopy 3-cells (Corollary 2.1). Hence, modulo the Poincaré conjecture, M^3 and N^3 are homeomorphic. If there is also a strong homotopy equivalence of N^3 onto M^3 , then M^3 and N^3 are homeomorphic (independently of the Poincaré conjecture).

If X is a compact subset of the interior of a piecewise-linear n-manifold M^n , $n \ge 3$, and if $X \subset UV^{\infty}$, then we shall say that X satisfies the *cellularity criterion* in M^n if for each open set $U \subset M^n$ such that $X \subset U$, there is an open set V such that $X \subset V \subset U$ and each loop in V-X is contractible in U-X. If $n \ge 5$ and $X \subset UV^{\infty}$, then X is cellular (with respect to piecewise-linear cells) in M^n if and only if the cellularity criterion holds (see [5]). For the situation in the 3-dimensional case, see Theorem 1.

We shall use E^n and S^n to denote Euclidean n-space, and the n-sphere, respectively. The term "manifold" applies only to a connected space, unless stated otherwise. If G is a disjoint collection of closed subsets of a space X such that the union of the elements of G is

¹ Alfred P. Sloan Fellow.

X, we shall say that G is an upper semicontinuous decomposition of X if for each $g \in G$ and for each open set $U \subset X$ such that $g \subset U$, there is an open set V such that $g \subset V \subset U$ and such that each element of G which intersects V is contained in U.

2. Cellularity of inverse sets. The following is an improved version of Theorem 1' of [5].

THEOREM 1. Let M^3 be a piecewise-linear 3-manifold without boundary and let X be a compact subset of M^3 such that $X \subset UV^{\infty}$ and X satisfies the cellularity criterion in M^3 . Then, for each open set $U \subset M^3$ such that $X \subset U$, there is a compact, polyhedral, contractible 3-manifold H such that

$$X \subset \operatorname{Int} H \subset H \subset U$$
,

and such that H-X is topologically $S^2 \times [0, 1)$.

PROOF. We assume a familiarity with Lemma 1 of [5]. Let an arbitrary open set $V \subset M^3$ be given such that $X \subset V$. The first step is to show that there is a compact 3-manifold-with-boundary $H \subset V$ such that $X \subset Int H$ and such that H is a "homotopy cube-with-handles," that is, H is obtained from a homotopy 3-cell by adding orientable handles of index one to its boundary.

To do this, we make several applications of the UV^{∞} property and of regular neighborhoods to find compact 3-manifolds-with-boundary K and M_1 (K may not be connected) such that

$$X \subset \operatorname{Int} K \subset K \subset \operatorname{Int} M_1 \subset M_1 \subset V$$

such that M_1 is contractible in V and Bd M_1 is connected and nonempty, and such that each loop in K is contractible in M_1 . Note that each polyhedral 2-sphere in M_1 bounds a homotopy 3-cell in V and, since Bd M_1 is connected, this homotopy 3-cell lies in M_1 . We are now in a position to repeat, using the same notation, the argument outlining the proof of Lemma 1 in [5]. The only difference is that in the present situation we know only that a polyhedral 2-sphere in M_1 bounds a homotopy 3-cell in M_1 , rather than a piecewise-linear 3-cell. This will complete the first step of the proof, and makes use only of the fact that $X \subseteq UV^{\infty}$.

The second step is to show, using the fact that X satisfies the cellularity criterion, that H can be chosen to be a homotopy 3-cell. For this we appeal to the proof of Theorem 1' of [5], to "cut the handles" of

our homotopy 3-cell-with-handles, without deleting any part of X in the process.

By the first two steps, we may find homotopy 3-cells H_1, H_2, \cdots , such that $H_{i+1} \subset \operatorname{Int} H_i$ and $X = \bigcap_{i=1}^{\infty} H_i$. The third step, which will complete the proof, is to show that there exists an integer N such that $A_i = H_i - \operatorname{Int} H_{i+1}$ is topologically $S^2 \times [0, 1]$ (a "3-annulus") for each i > N.

Let $F_i \subset \text{Int } A_i$ be a polyhedral homotopy 3-cell obtained from A_i by tunneling along an arc from one component of Bd A_i to the other, and then shaving off a product neighborhood of the boundary of the resulting 3-manifold. Then F_i is a 3-cell if and only if A_i is a 3-annulus. A result of Kneser (pp. 252–255 of [3]) implies that, since H_1 is compact, there is an integer N such that H_1 does not contain more than N disjoint, polyhedral homotopy 3-cells which fail to be 3-cells (apply Kneser's result to the "double" of H_1). This is the required N. The theorem follows.

COROLLARY 1.1. Assume the hypotheses of Theorem 1, and let G be the upper semicontinuous decomposition of M^3 whose only nondegenerate element is X. Then the decomposition space M^3/G is a 3-manifold which can be obtained from M^3 by removing a compact, polyhedral homotopy 3-cell and replacing it by a piecewise-linear 3-cell.

THEOREM 2. Suppose that M^3 and N^3 are closed piecewise-linear 3-manifolds and that f is a continuous mapping of M^3 onto N^3 such that $f^{-1}(y) \in UV^{\infty}$, for each $y \in N^3$. Then, for each $y \in N^3$, and for each open set $U \subset M^3$ containing $X = f^{-1}(y)$, there is an open set V such that $X \subset V \subset U$ and V - X is topologically $S^2 \times (0, 1)$.

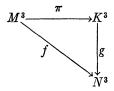
PROOF. Using the techniques of [7, Theorem 2.1], or [4, Lemma 5], or [2, Corollary 6.5], we see that each set $f^{-1}(y)$ satisfies the cellularity criterion in M^3 . The result follows by Theorem 1.

COROLLARY 2.1. Under the hypotheses of Theorem 2, there are at most a finite number of $y \in N^3$ such that $f^{-1}(y)$ fails to be cellular in M^3 . Further, N^3 can be obtained by removing a finite, disjoint collection of compact, polyhedral homotopy 3-cells from M^3 and replacing each by a piecewise-linear 3-cell.

PROOF. The fact that only a finite number of inverse sets can fail to be cellular is immediate from Theorem 2, the compactness of M^3 , and the fact that $\{f^{-1}(y) | y \in N^3\}$ is an upper semicontinuous decomposition of M^3 into compact sets. To prove the second assertion, let y_1, \dots, y_n be all those points y of N^3 for which $f^{-1}(y)$ fails to be cellu-

lar. Let π be a mapping of M^3 onto a closed 3-manifold K^3 such that the only nondegenerate inverse sets of π are $f^{-1}(y_1)$, \cdots , $f^{-1}(y_n)$, and such that K^3 is (by Corollary 1.1) obtained from M^3 by a finite number of "surgeries" of the type described.

Let g be defined so as to make the following diagram consistent:



Then g is a cellular mapping, and by [1], N^3 is homeomorphic to K^3 , as required.

COROLLARY 2.2 Under the hypotheses of Theorem 2, if M^3 and N^3 are homeomorphic, then each set $f^{-1}(y)$ is cellular in M^3 .

PROOF. Reviewing the proof of Corollary 2.1, we see that it will suffice to show that if F_1, \dots, F_n is a finite disjoint collection of polyhedral, homotopy 3-cells in M^3 , such that each F_i fails to be a topological 3-cell, and if each F_i is replaced by a (real) 3-cell, then the resulting 3-manifold is *not* homeomorphic to M^3 . If M^3 is an orientable 3-manifold, this is immediate from Milnor's "unique decomposition theorem" (Theorem 1 of [6]). If M^3 is nonorientable, we apply the same argument to the orientable double covering of M^3 .

COROLLARY 2.3. Let M^3 and N^3 be closed, piecewise-linear 3-manifolds, and suppose that there exist continuous mappings

$$f_1: M^3 \rightarrow N^3, \qquad f_2: N^3 \rightarrow M^3$$

of each of these 3-manifolds onto the other, such that $f_1^{-1}(y) \in UV^{\infty}$ and $f_2^{-1}(x) \in UV^{\infty}$, for each $x \in M^3, y \in N^3$. Then M^3 and N^3 are homeomorphic, and each point inverse of $f_i(i=1,2)$ is cellular.

PROOF. This follows from Corollary 2.1 and Corollary 2.2 (and its proof).

REFERENCES

- 1. Steve Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, Abstract 634–53, Notices Amer. Math. Soc. 13 (1966), 374.
 - 2. ——, Homotopy properties of decomposition spaces, (to appear).
- 3. H. Kneser, Geschlossen Flächen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math. Verein. 38 (1929), 248–260.
- 4. J. Martin, The sum of two crumpled cubes, Michigan Math. J. 13 (1966), 147-151.

- 5. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
- 6. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
- 7. T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of E^n yield E^n , Trans. Amer. Math. Soc. 122 (1966), 427-435.

THE UNIVERSITY OF WISCONSIN

THE C*-ALGEBRA GENERATED BY AN ISOMETRY¹

BY L. A. COBURN

Communicated by P. R. Halmos, April 24, 1967

1. Introduction. In this paper, I determine the structure of any C^* -algebra generated by an isometry. Using a theorem of Halmos [3], the problem is reduced to the study of C^* -algebras $\mathfrak{C}(A)$ generated by A and A^* where (i) A is unitary, (ii) $A = S_{\alpha}$ with S_{α} the shift of multiplicity α , and (iii) $A = W \oplus S_{\alpha}$ with W unitary. In case (i), the resulting algebra is isometrically *-isomorphic to the algebra $C(\sigma(A))$ of all complex-valued continuous functions on the spectrum of A and nothing more need be said. In cases (ii) and (iii), it turns out that $\mathfrak{C}(A)$ is isometrically *-isomorphic to $\mathfrak{C}(S_1)$ so that $\mathfrak{C}(A)$ is independent of W and α . In each of these cases, there is a unique minimal closed two-sided ideal $\mathfrak{I}(A)$ such that $\mathfrak{C}(A)/\mathfrak{I}(A)$ is isometrically *-isomorphic to C(T), where T is the perimeter of the unit circle. The ideal $\mathfrak{I}(A)$ is determined spatially in the cases $A = S_1$ and $A = W \oplus S_1$.

We begin with the notation. For our purposes, all Hilbert spaces are complex and all ideals are closed and two-sided. If $\{e_n: n=0, 1, 2, \cdots\}$ is an orthonormal basis for a Hilbert space H then the shift $S=S_1$ is defined by $Se_n=e_{n+1}$. By a shift of multiplicity α is meant the α -fold direct sum $S \oplus S \oplus \cdots \oplus S$ acting on $H \oplus H \oplus \cdots \oplus H$. The orthogonal projection onto the one-dimensional subspace of H spanned by e_n is denoted by P_n .

If H (or H_i) is a Hilbert space then $\mathfrak{B}(H)$ (or $\mathfrak{B}(H_i)$) denotes the algebra of all bounded operators with the usual norm topology and \mathfrak{K} (or \mathfrak{K}_i) denotes the ideal of all compact operators. The natural quotient map from $\mathfrak{B}(H)$ to $\mathfrak{B}(H)/\mathfrak{K}$ ($\mathfrak{B}(H_i)$ to $\mathfrak{B}(H_i)/\mathfrak{K}_i$) is given by

¹ Research supported by NSF Grant GP 5866.