
STRONG HOMOTOPY EQUIVALENCE OF 3-MANIFOLDS 

BY D. R. MCMILLAN, JR.1 

Communicated by R. H. Bing, May 8, 1967 

1. Introduction. Let I f be a topological space and let X be a com­
pact subset of M. After [2], we say that X has property U F00 (or 
" 1 6 UV™") in M if for each open set UCM such that XQU, there 
is an open set V such that XQ VQ U and V is contractible to a point 
in U. I t is known [2] that each finite-dimensional compact absolute 
retract (i.e., retract of a cell) has property UV°° under some embed­
ding in Euclidean space, and that if one embedding of a compact set 
X in a manifold has property C/F00, then so does every embedding of 
X in a manifold. 

Armen trout has shown (§10 of [2]) that if Mn and Nn are closed 
(i.e., compact and boundaryless) topological w-manifolds, and if ƒ is 
a continuous mapping of Mn onto Nn such t h a t / - 1 ( j ) G UV00 for each 
y(ENn, then ƒ is a homotopy equivalence. We shall call such a map­
ping a strong homotopy equivalence of Mn onto Nn. If n = 3 and if ƒ 
is cellular (i.e., each set f~l(y) is cellular—and hence UV°°), then he 
has shown [l] that Mz and Nz are homeomorphic. I t is our purpose 
here to note that if there is a strong homotopy equivalence of Mz 

onto Nz, then M3 and iV3 differ by only a finite number of homotopy 
3-cells (Corollary 2.1). Hence, modulo the Poincaré conjecture, Mz 

and Nz are homeomorphic. If there is also a strong homotopy equiv­
alence of Nz onto Mz, then Mz and Nz are homeomorphic (inde­
pendently of the Poincaré conjecture). 

If X is a compact subset of the interior of a piecewise-linear n-
manifold Mn, n^3, and if J £ Z7F00, then we shall say that X satis­
fies the cellularity criterion in Mn if for each open set UC.M71 such that 
X(ZUy there is an open set V such that XQVCU and each loop in 
V—X is contractible in U—X. If n^S and I G f / F 0 0 , then X is 
cellular (with respect to piecewise-linear cells) in Mn if and only if 
the cellularity criterion holds (see [5]). For the situation in the 3-
dimensional case, see Theorem 1. 

We shall use En and Sn to denote Euclidean w-space, and the 
n-sphere, respectively. The term "manifold" applies only to a con­
nected space, unless stated otherwise. If G is a disjoint collection of 
closed subsets of a space X such that the union of the elements of G is 
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X, we shall say that G is an upper semicontinuous decomposition of X 
if for each g £ G and for each open set UQX such that gCU, there is 
an open set V such that g C V(Z U and such that each element of G 
which intersects V is contained in U. 

2. Cellularity of inverse sets. The following is an improved version 
of Theorem 1' of [S]. 

THEOREM 1. Let Mz be a piecewise-linear 3-manifold without bound-
ary and let X be a compact subset of Mz such that XÇiUV™ and X satis­
fies the cellularity criterion in M*. Then, for each open set ZJQM* such 
that XCU, there is a compact, polyhedral, contractible 3-manifold H 
such that 

XQIntHCHCU, 

and such that H—X is topologically S2X [0, 1). 

PROOF. We assume a familiarity with Lemma 1 of [5]. Let an arbi­
trary open set VC.M3 be given such that XQV. The first step is to 
show that there is a compact 3-manifold-with-boundary HQ. V such 
that XÇlnt H and such that H is a "homotopy cube-with-handles," 
that is, H is obtained from a homotopy 3-cell by adding orientable 
handles of index one to its boundary. 

To do this, we make several applications of the UV™ property and 
of regular neighborhoods to find compact 3-manifolds-with-boundary 
K and Mi (K may not be connected) such that 

X C Int K C K C Int Mi C Mi C Vy 

such that Mi is contractible in V and Bd Mi is connected and non­
empty, and such that each loop in K is contractible in Mi. Note that 
each polyhedral 2-sphere in Mi bounds a homotopy 3-cell in V and, 
since Bd Mi is connected, this homotopy 3-cell lies in Mi. We are now 
in a position to repeat, using the same notation, the argument out­
lining the proof of Lemma 1 in [5]. The only difference is that in the 
present situation we know only that a polyhedral 2-sphere in Mi 
bounds a homotopy 3-cell in Mi, rather than a piecewise-linear 3-cell. 
This will complete the first step of the proof, and makes use only of 
the fact that X£ U F00. 

The second step is to show, using the fact that X satisfies the cellu­
larity criterion, that H can be chosen to be a homotopy 3-cell. For this 
we appeal to the proof of Theorem V of [5], to "cut the handles" of 
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our homotopy 3-cell-with-handles, without deleting any part of X in 
the process. 

By the first two steps, we may find homotopy 3-cells Hi, H2i • • • , 
such that Hi+xQlntHi and X = f)^L1Hi. The third step, which will 
complete the proof, is to show that there exists an integer N such 
that Ai = Hi-lnt Hi+1 is topologically S2X [0, l ] (a "3-annulus") for 
each i>N. 

Let FiQlntAi be a polyhedral homotopy 3-cell obtained from Ai 
by tunneling along an arc from one component of Bd Ai to the other, 
and then shaving off a product neighborhood of the boundary of the 
resulting 3-manifold. Then Fi is a 3-cell if and only if Ai is a 3-annu-
lus. A result of Kneser (pp. 252-255 of [3]) implies that, since Hi is 
compact, there is an integer N such that Hi does not contain more 
than N disjoint, polyhedral homotopy 3-cells which fail to be 3-cells 
(apply Kneser's result to the "double" of Hi). This is the required N. 
The theorem follows. 

COROLLARY 1.1. Assume the hypotheses of Theorem 1, and let G be 
the upper semicontinuous decomposition of Mz whose only nondegen-
erate element is X. Then the decomposition space Mz/G is a 3-manifold 
which can be obtained from Mz by removing a compact, polyhedral homo­
topy 3-cell and replacing it by a piecewise-linear 3-cell. 

THEOREM 2. Suppose that Mz and Nz are closed piecewise-linear 
3-manifolds and that f is a continuous mapping of Mz onto Nz such that 
f~~l{y) G UV°°, for each y^Nz. Then, for each yE:Nz, and for each open 
set UCMZ containing X=f~1(y), there is an open set V such that 
XC VCUand V~X is topologically S2X (0, 1). 

PROOF. Using the techniques of [7, Theorem 2.1], or [4, Lemma 5], 
or [2, Corollary 6.5], we see that each set f~l(y) satisfies the cellular-
ity criterion in Mz. The result follows by Theorem 1. 

COROLLARY 2.1. Under the hypotheses of Theorem 2, there are at most 
a finite number of yÇzNz such thatf~x(y) fails to be cellular in Mz. Fur­
ther, Nz can be obtained by removing a finite, disjoint collection of com­
pact, polyhedral homotopy 3-cells from Mz and replacing each by a 
piecewise-linear 3-cell. 

PROOF. The fact that only a finite number of inverse sets can fail to 
be cellular is immediate from Theorem 2, the compactness of Mz, and 
the fact that {f~1(y)\ydNz} is an upper semicontinuous decomposi­
tion of Mz into compact sets. To prove the second assertion, let 
yi, • • • , yn be all those points y of Nz for which f~l (y) fails to be cellu-
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lar. Let ir be a mapping of Mz onto a closed 3-manifold Kz such that 
the only nondegenerate inverse sets of 7r are f~l(yi), • • • , f~l{yn), and 
such that Kz is (by Corollary 1.1) obtained from Mz by a finite num­
ber of "surgeries" of the type described. 

Let g be defined so as to make the following diagram consistent: 

Then g is a cellular mapping, and by [ l ] , Nz is homeomorphic to Kz, 
as required. 

COROLLARY 2.2 Under the hypotheses of Theorem 2, if Mz and N3 are 
homeomorphicj then each setf~l{y) is cellular in Mz. 

PROOF. Reviewing the proof of Corollary 2.1, we see that it will 
suffice to show that if Fi, • • • , Fn is a finite disjoint collection of poly­
hedral, homotopy 3-cells in Mz, such that each Fi fails to be a topo­
logical 3-cell, and if each Fi is replaced by a (real) 3-cell, then the 
resulting 3-manifold is not homeomorphic to M3. If Mz is an orientable 
3-manifold, this is immediate from Milnor's "unique decomposition 
theorem" (Theorem 1 of [ó]). If Mz is nonorientable, we apply the 
same argument to the orientable double covering of Mz. 

COROLLARY 2.3. Let Mz and Nz be closed, piecewise-linear 3-mani­
folds, and suppose that there exist continuous mappings 

f!:Mz->Nz, f2:N
z->Mz 

of each of these 3-manifolds onto the other, such that fï1{y)&UVco and 
f^WGUV™, for each x&Mz,yÇzNz. Then Mz and Nz are homeo­
morphic, and each point inverse offi(i =1 ,2 ) is cellular. 

PROOF. This follows from Corollary 2.1 and Corollary 2.2 (and its 
proof). 
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1. Introduction. In this paper, I determine the structure of any 
C*-algebra generated by an isometry. Using a theorem of Halmos 
[3], the problem is reduced to the study of C*-algebras d(A) gener­
ated by A and A * where (i) A is unitary, (ii) A = Sa with Sa the shift 
of multiplicity a, and (iii) A = W@Sa with W unitary. In case (i), the 
resulting algebra is isometrically ^isomorphic to the algebra C(<r(A)) 
of all complex-valued continuous functions on the spectrum of A and 
nothing more need be said. In cases (ii) and (iii), it turns out that 
Q(A) is isometrically *-isomorphic to &(Si) so that (%(A) is indepen­
dent of W and a. In each of these cases, there is a unique minimal 
closed two-sided ideal ó(A) such that Q(A)/$(A) is isometrically 
*-isomorphic to C(T), where T is the perimeter of the unit circle. The 
ideal $(A) is determined spatially in the cases A =Si and A = W®Si. 

We begin with the notation. For our purposes, all Hilbert spaces 
are complex and all ideals are closed and two-sided. If {en: w = 0, 1, 
2, • • • } is an orthonormal basis for a Hilbert space H then the shift 
S = S\ is defined by Sen**en+i. By a shift of multiplicity a is meant the 
a-fold direct sum 5 © S 0 • • • 0 5 acting on H@H® • • • @H. 
The orthogonal projection onto the one-dimensional subspace of H 
spanned by en is denoted by Pn. 

If H (or Hi) is a Hilbert space then (&(H) (or (R(Hi)) denotes the 
algebra of all bounded operators with the usual norm topology and 
3Z (or 5C») denotes the ideal of all compact operators. The natural quo­
tient map from (B(JE?) to (R(H)/K ((B(£T»-) to (B(jff<)/5C.-) is given by 
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