THE WEAKLY COMPLEX BORDISM OF LIE GROUPS

BY TED PETRIE

Communicated by William Browder, May 1, 1967

1. Preliminaries. Let \mathfrak{R} be the class of compact 1 connected semi-simple Lie groups; $\mathfrak{R}' \subset \mathfrak{R}$ is the following set of groups, $\operatorname{Sp}(n)$, $\operatorname{SU}(n)$, $\operatorname{Spin}(n)$, G_2 , F_4 , E_6 , E_7 , E_8 , $U_*(X)$ the weakly complex bordism of X [1] and Λ the ring $U_*(pt) = Z[Y_1, Y_2, \cdots]$. Λ is the weakly complex bordism ring defined by Milnor. The generators Y_i are weakly complex manifolds of dim 2i. The bordism class of a weakly complex manifold M^{2n} is determined by its Milnor numbers [2] $s_{\omega}[M^{2n}]$ for ω ranging over all partitions of n. In particular, the generators Y_i can be chosen so that $s_i(Y_i) = 1$ unless $i = p^k - 1$ for some prime p and in this case $s_i(Y_i) = p$; moreover, we assume generators Y_i chosen so that its Todd genera are 1.

It is possible and convenient to introduce bordism theories with other coefficient rings than Λ . If Γ is such a ring, $U_*(\ ,\ \Gamma)$ will denote the resulting theory. Briefly here are some examples: $\Lambda_p = Z_p[Y_1,\ Y_2,\ \cdots],\ \Lambda[1/Y_{p-1}] = \text{direct lim } 1/Y_{p-1}^n\Lambda$ and $\Lambda_p[1/Y_{p-1}] = \text{direct lim } 1/Y_{p-1}^n\Lambda_{p}.^1$ Let $M = \{M_n\}$ denote the stable object of Milnor [1] and $Z_p = S^1U_pE^2$ the space obtained by attaching E^2 to S^1 via a map of degree p. $M_{n+2}^{Z_p}$ denotes the space of base point preserving maps from Z_p to M_{n+2} . Then $U_k(X,\Lambda_p) = \text{direct lim } \Pi_{n+k}(X^+ \wedge M_{n+2}^{z_p})$ X^+ is the disjoint union of X and a point $x_0 \cdot U_*(X,\Lambda_p)$ is the resulting theory. $U_*(X,\Lambda[1/Y_{p-1}]) = U_*(X) \otimes_{\Lambda} \Lambda[1/Y_{p-1}]$ and $U_*(X,\Lambda_p[1/Y_{p-1}]) = U_*(X,\Lambda_p) \otimes_{\Lambda p} \Lambda_p[1/Y_{p-1}]$.

To $K \subset \mathcal{K}$ there is associated a "generating variety" K_s introduced by Bott [4]. Essentially K_s is the homogeneous space K/K^s where K^s is the centralizer of a 1-dimensional torus $S^1 \subset K$. The dimension of the center of K^s is 1. The commutator map

$$S^1 \times K_{\bullet} \xrightarrow{\left[\ \ \right]} K$$

defined by $[t, [k]] = tkt^{-1}k^{-1}$ for $[k] \in K_s$, $t \in S^1 \subset K$ is of particular importance.

2. Statement of results. Define $\Lambda(K) = \Lambda$ if $H^*(K)$ has no torsion, $= \Lambda [1/Y_1]$ if $H^*(K)$ has only 2 torsion, $= \Lambda [1/Y_1, 1/Y_2]$ if $H^*(K)$ has only 2, 3 torsion, $= \Lambda [1/Y_1, 1/Y_2, 1/Y_4]$ if $H^*(K)$ has 2, 3 and 5 torsion.

¹ E.g., Λ [1/ Y_{p-1}] is the ring obtained from Λ by making Y_{p-1} a unit.

THEOREM 1. If K = Spin(n), Sp(n), SU(n) or G_2 , $\text{Im}[]_*$ generates $U_*(K, \Lambda(K))$ and $E_0U_*(K, \Lambda(K))$ is an exterior algebra on rank K generators for some filtration of $U_*(K, \Lambda(K))$.

THEOREM 2. If $K \subset \mathcal{K}'$ then Im $[]_{p*}$ generates $U_*(K, \Lambda_p[1/Y_{p-1}])$ and $E_0U_*(K, \Lambda_p[1/Y_{p-1}])$ is an exterior algebra on rank K generators (except possibly for $(E_7, 2), (E_8, 2), (E_8, 3)$). p is a prime.

COROLLARY 3. If $K \subset \mathcal{K}'$, Im $[\]_*$ generates (algebraically) $U_*(K, \Lambda(K))$ and $U_*(K, \Lambda(K))$ is a torsion free abelian group (except possibly for E_7 and E_8).

COROLLARY 4 (HODGKIN). For K as in Theorem 1, $K^*(K)$ is an exterior algebra on rank K generators.

THEOREM 5. For $n \ge 7$ $U_*(Spin(n))$ has 2 torsion and Y_1 torsion

THEOREM 6. For any i, the Y_i torsion subgroup of $U_*(\text{Spin }(n))$ is contained in the Y_1 torsion subgroup of $U_*(\text{Spin }(n))$.

3. Outline of techniques. The most significant fact about the $K \subset \mathcal{K}$ is that the homology of $G = \Omega K$ is all even dimensional and generated by weakly complex manifolds [4], [5]. The method we have chosen to exploit this fact is the following: The Milnor construction of the classifying space K of ΩK leads to a spectral sequence converging to $U_*(K)$ [6]. The E^2 term in this case is Tor $U_*(G)$ (Λ , Λ) because $U_*(G)$ is Λ free. (This follows from the fact.) Introducing Γ coefficients, there results a spectral sequence $\operatorname{Tor}^{U_*(G,\Gamma)}(\Gamma,\Gamma)$ $\Rightarrow U_*(K,\Gamma)$. The ring $U_*(G,\Gamma)$ is determined for various Γ . $\operatorname{Tor}^{U_*(G,\Gamma)}(\Gamma,\Gamma)$ is shown to be an exterior algebra on rank K generators and consequently the spectral sequence collapses. The generators lie in $E_{1,*}^{\infty}$. This implies that $\operatorname{Im} []_*$ generates $U_*(K,\Gamma)$.

There is a procedure for passing from the homology ring $H_*(G)$ to the ring $U_*(G)$. It is this: Let $\mu\colon U_*(G)\to H_*(G)$ be the natural transformation defined by $\mu[M,f]=f_*(\sigma_M)$ see [1]. $H_*(G)$ is $Z[w_1,w_2,\cdots,w_n]/I$ as an algebra where the w_i are even dimensional and I is an ideal $(f_1(w),f_2(w),\cdots,f_k(w))$. f_i is a homogeneous polynomial in the w_i . Let $\Gamma\in U_*(G)$ be such that $\mu(\Gamma_i)=w_i$ and suppose each Γ_i augments to zero under $U_*(G)\to U_*(pi)$. Then $U_*(G)=\Lambda[\Gamma_1,\Gamma_2,\cdots,\Gamma_k]/J$ as an algebra where J is the ideal generated by (*) $g_i(\Gamma)=f_i(\Gamma)+\sum_j V_{ij}m_{ij}(\Gamma)$, $i=1\cdots k$. Here $m_{ij}(\Gamma)$ is a monomial in the Γ_j 's of total dimension strictly less than that of $f_i(\Gamma)$ and $V_{ij}\in\Lambda$. Using the characteristic classes s_ω [2], one can define characteristic numbers $s_\omega(\alpha)$ for $\alpha\in U_*(G)$ and $\alpha=0$ iff all characteristic numbers $s_\omega(\alpha)$ are zero. Since $g_i(\Gamma)=0$ we have $s_\omega(g_i(\Gamma))=0$. Expressing this

via (*), (**) $s_{\omega}(f_i(\Gamma)) + \sum_{j} s_{\omega}(V_{ij}m_{ij}(\Gamma)) = 0$. Expanding this further gives a sequence of linear equations involving the characteristic numbers $s_{\omega}[V_{ij}]$ and known quantities. One solves for the $s_{\omega}[V_{ij}]$'s which completely determines $V_{ij} \in \Lambda$.

The data necessary to solve the equation (**) is: (1) A choice of weakly complex manifolds M_i and maps $f_i: M_i \rightarrow G$ such that $\{f_{i*}(\sigma_{M_i})\}$ generate the ring $H_*(G)$, (2), the ring $H^*(M_i)$, (3), the Milnor characteristic classes of M_i and the ring homomorphisms f_j^* . Part of this is supplied in [4] and [5]; the remainder by the author.

Having obtained the ring $U_*(G, \Gamma)$ one uses homological algebra and determines the algebra $\operatorname{Tor}^{U_*(G,\Gamma)}(\Gamma, \Gamma)$ from which the theorems follow.

BIBLIOGRAPHY

- 1. P. Conner and E. Floyd, Torsion in SU bordism, Mem. Amer. Math. Soc. 60 (1966), 72 pp.
- 2. J. Milnor, Lectures on characteristic classes, Mimeographed notes, Princeton Univ., Princeton, N. J., 1958.
- 3. S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories 1, Osaka Math J. 2 (1965), 71-115.
 - 4. R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- 5. ——, Applications of the theory of Morse to symmetric spaces, Amer J. Math. 80 (1958), 965-1029.
- 6. J. Milnor, Construction of universal bundles. II, Ann. of Math. 63 (1956), 430-436.

Institute for Defense Analyses