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1. Preliminaries. Let X be the class of compact 1 connected semi-
simple Lie groups; 3C'C3C is the following set of groups, Sp(w), SU(w), 
Spin(w), G2, F*, EQ, E7, Es, U*(X) the weakly complex bordism of 
X [ l ] and A the ring U*(pt) = Z[Fi , F2, • • • ]. A is the weakly com­
plex bordism ring defined by Milnor. The generators F,- are weakly 
complex manifolds of dim 2i. The bordism class of a weakly complex 
manifold M2n is determined by its Milnor numbers [2] sw[ikf2n] for co 
ranging over all partitions of n. In particular, the generators F,- can be 
chosen so that s»(F*) = 1 unless i = pk — l for some prime p and in this 
case Si(Yi)=p; moreover, we assume generators F»- chosen so that 
its Todd genera are 1. 

I t is possible and convenient to introduce bordism theories with 
other coefficient rings than A. If T is such a ring, [/*( , T) will 
denote the resulting theory. Briefly here are some examples: Ap 

= ZP[YU F2, • • • ], A[1 /F„_ i ]= direct lim 1 / F ^ A and Ap[l/F3 ,_i] 
= directum l / F ^ A ^ . 1 Let Af = {Mn} denote the stable object of Mil­
nor [ l ] and Zp = S1UpE

2 the space obtained by attaching E2 to S1 via 
a map of degree p. Ml%.2 denotes the space of base point preserving 
maps from Zp to Afn+2. Then Uk(X, Ap) = direct lim ILn+k(X

+ /\M%+2) 
X+ is the disjoint union of X and a point x0- U*(X, Ap) is the resulting 
theory. U^XMUY^i]) = U*(X)® ^ [ l / F p - i ] and U*(X, 
A,[ l /Fp- i ] ) - U*(X, Ap)®ApA,[l/Fp-.i]. 

To KC.& there is associated a "generating variety" K8 introduced 
by Bott [4]. Essentially K8 is the homogeneous space K/K8 where 
K8 is the centralizer of a 1-dimensional torus S^^QK. The dimension of 
the center of K8 is 1. The commutator map 

sl XK*--\K 

defined by [*, [Jfe]]=/*r1*-1 for [k]EK8, tES'QK is of particular 
importance. 

2. Statement of results. Define A(K) =A if H*(K) has no torsion, 
=A[1/Fx] if IT*(20 has only 2 torsion, = A [ l / F i , 1/F2] if H*{K) 
has only 2, 3 torsion, = A [ l / F i , 1/F2, 1/F4] if H*(K) has 2, 3 and 
5 torsion. 

1 E.g., A [1/Fp_i] is the ring obtained from A by making F P 4 a unit. 
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THEOREM 1. If K = Spin (n), Sp (n), SU (n) or G2, Im [ ]* generates 
£/*(i£, A(K)) and Eç)U*(K, A(K)) is an exterior algebra on rank K 
generators for some filtration of U*(K, A(K)). 

THEOREM 2. If K(Z3Z' then Im [ ]p* generates U*(K, Ap[l/Yp-.i]) 
and E0£/*(i£, AP[\/YP-I\) is an exterior algebra on rank K generators 
{except possibly f or (E7i 2), (E8, 2), (J38> 3)). p is a prime. 

COROLLARY 3. If KQ.W>', Im [ ]* generates (algebraically) 
U*(K, A(K)) and Z7*(iC, A(K)) is a torsion free abelian group (except 
possibly for E7 and Es). 

COROLLARY 4 (HODGKIN). For K as in Theorem 1, K*(K) is an 
exterior algebra on rank K generators. 

THEOREM 5. For n^7 £7* (Spin (n)) has 2 torsion and Yi torsion 

THEOREM 6. For any i, the Yi torsion subgroup of Z7*(Spin (n)) is 
contained in the Yi torsion subgroup of Z7#(Spin (n)). 

3. Outline of techniques. The most significant fact about the 
KQX is that the homology of G — QK is all even dimensional and 
generated by weakly complex manifolds [4], [5]. The method we 
have chosen to exploit this fact is the following: The Milnor construc­
tion of the classifying space K of UK leads to a spectral sequence 
converging to U*(K) [ó]. The E2 term in this case is Tor u*(0) (A, A) 
because U*(G) is A free. (This follows from the fact.) Introducing T 
coefficients, there results a spectral sequence Toru^0iT)(T9 T) 
=ïU*(K, T). The ring £/*(G, T) is determined for various I \ 
Toru*(G'T)(Tf T) is shown to be an exterior algebra on rank K genera­
tors and consequently the spectral sequence collapses. The generators 
lie in £**. This implies that Im [ ]* generates U*(Ky Y). 

There is a procedure for passing from the homology ring H*(G) to 
the ring U*(G). I t is this: Let JJL: U*(G)—>H*(G) be the natural trans­
formation defined by /J,[M,f] =/*(<rji/) see [ l ] . H*(G) is Z\w\, w2l • • • , 
wn]/I as an algebra where the Wi are even dimensional and I is an 
ideal (fi(w)1f2(w)1 • • • ,fk(w)). ƒ* is a homogeneous polynomial in the 
Wi. Let T G U*(G) be such that M(I\-) ~wi a n d suppose each I \ aug­
ments to zero under U*(G)-*U*(pt). Then U*(G)=A[Th T2t • • • , 
Tk]/J as an algebra where / is the ideal generated by (*) gi(T) 
= fi(r) + yi7 Vqtna(T), i = \ • • • k. Here nta(T) is a monomial in the 
r / s of total dimension strictly less than that of jf»(r) and F^GA. 
Using the characteristic classes su [2], one can define characteristic 
numbers su(a) for a£ [ /* (G) and a = 0 iff all characteristic numbers 
5w(a) are zero. Since g»(r )=0 we have s»(g*(r))=0. Expressing this 
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via (*), (**) 5«(/1-(r)) + 23J-5„(7<,-Wt-y(r))=0. Expanding this further 
gives a sequence of linear equations involving the characteristic num­
bers s«[^tf] and known quantities. One solves for the s«[Vtf]'s which 
completely determines F*y£A. 

The data necessary to solve the equation (**) is: (1) A choice of 
weakly complex manifolds Mi and maps ƒ»•: Mi—>G such that 
{fi*(<TMt) } generate the ring 23*(G), (2), the ring H*(Mi), (3), the Mil-
nor characteristic classes of Mi and the ring homomorphisms ƒ*. Part 
of this is supplied in [4] and [5j ; the remainder by the author. 

Having obtained the ring U*(G, T) one uses homological algebra 
and determines the algebra Toru*(G'T)(Tt T) from which the theorems 
follow. 
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