A THEOREM ON RANK WITH APPLICATIONS TO MAPPINGS ON SYMMETRY CLASSES OF TENSORS

BY MARVIN MARCUS¹

Communicated by Gian-Carlo Rota, March 31, 1967

1. Results. Let R be a field containing a real closed subfield R_0 . The main results of this announcement follow.

THEOREM 1. Let A_1, A_2, \dots, A_p be $m \times n$ matrices with entries in an infinite subset Ω of R containing the natural numbers in R_0 . Let k be a positive integer and assume that the rank of each A_i is at least k. Then there exist nonsingular matrices E and F with entries in Ω such that every set of k rows (columns) of EA_iF is linearly independent, $i=1,\dots,p$.

COROLLARY 1. If the matrices A_1, \dots, A_p in Theorem 1 each have rank precisely k then every k-square subdeterminant of EA_iF is nonzero, $i=1,\dots,p$.

THEOREM 2. If A_1, \dots, A_p are n-square complex hermitian matrices all of rank at least k then there exists a nonsingular matrix E such that every set of k rows (columns) of $E*A_iE$ is linearly independent.

In 1933, J. Williamson [1] gave necessary and sufficient conditions for the compounds of two matrices to be equal. The nontrivial part of his result states the following: if A is a complex matrix of rank r and r > m then $C_m(A) = C_m(B)$ if and only if A = zB where $z^m = 1$. A result closely connected to Theorem 1 and generalizing the Williamson result can be proved. We state our theorem in an invariant setting.

Thus, let V be an n-dimensional space over the complex numbers, let H be a subgroup of the symmetric group S_m , $m \le n$, and let χ be a complex valued character of degree 1 on H. A multilinear function $f(v_1, \dots, v_m)$ is symmetric with respect to H and χ if $f(v_{\sigma(1)}, \dots, v_{\sigma(m)}) = \chi(\sigma)f(v_1, \dots, v_m)$ for all v_1, \dots, v_m in V and all $\sigma \in H$. Let P be a vector space and f a fixed multilinear function symmetric with respect to H and χ , $f: V \times \dots \times V \to P$, such that for any multilinear function $g, g: V \times \dots \times V \to U$, also symmetric with respect to H and χ , there exists a linear $h: P \to U$ that makes the following diagram commutative:

¹ This research was completed under Grant AFOSR 698–67 awarded by the Air Force Office of Scientific Research.

Then the pair P, f is called a symmetry class of tensors associated with H and χ , e.g., $H = S_m$, $\chi = \operatorname{sgn}$, $P = \bigwedge^m V$, $f(v_1, \dots, v_m) = v_1 \bigwedge \dots \bigwedge v_m$, the usual mth Grassmann product. If T is a linear transformation on V then one defines a linear transformation h via the diagram (1) with U = P, $g(v_1, \dots, v_m) = f(Tv_1, \dots, Tv_m)$. In this case h is called the transformation induced by T and will be denoted here by K(T). If $P = \bigwedge^m V$ then K(T) is the mth compound of T, $C_m(T)$. Another example: if H is the identity group then $P = \bigotimes_{i=1}^m V$, the mth tensor space over V, and $K(T) = \Pi^m(T)$, the mth Kronecker power of T.

We have the following generalization of Williamson's result to an arbitrary symmetry class of tensors as described above. We do not present a proof here but this generalization depends directly on Theorem 1 for the case p=2.

THEOREM 3. If the rank of T is r and r > m, then K(T) = K(S) if and only if T = zS where $z^m = 1$.

COROLLARY 2. If V is a unitary space, the rank of T is r, and r > m, then T is normal if and only if K(T) is normal.

2. **Proof outline.** We say that a set of $m \times n$ matrices (A_1, \dots, A_p) have property R_k if there exists a nonsingular n-square matrix F such that every set of k columns of A_iF , $i=1,\dots,p$, is linearly independent: this is abbreviated $(A_1,\dots,A_p) \in R_k$. It is clear that if we can prove that any set of p matrices all of rank at least k satisfy $(A_1,\dots,A_p) \in R_k$ then Theorem 1 will follow. Observe that if S_1,\dots,S_p are nonsingular m-square matrices then

$$(2) (S_1A_1, \cdots, S_pA_p) \in R_k$$

if and only if $(A_1, \dots, A_p) \in R_k$.

Now let L be the n-square matrix whose (i, j) entry is i^j , i, $j = 1, \dots, n$. It is routine to verify that every subdeterminant of every order of L is nonzero. Next, let t_1, \dots, t_n be independent indeterminates over R and define an n-square matrix $L(t_1, \dots, t_n)$ over $R[t_1, \dots, t_n]$ whose (i, j) entry is $t_i i^j$, $i, j = 1, \dots, n$. It follows that any specialization of t_1, \dots, t_n to nonzero elements of Ω pro-

duces a matrix every one of whose subdeterminants is nonzero. According to (2) we can take $(A_1, \dots, A_p) = (H_1, \dots, H_p)$ where H_i is the Hermite normal form of A_i , $i=1,\dots,p$. Next, consider the matrices $B_i = H_i L(t_1, \dots, t_n)$ and define the polynomial $p_i(t_1, \dots, t_n)$ to be the product of all $C_{n,k}$ entries in the first row of the kth compound matrix of B_i , i.e., $C_k(B_i) = C_k(H_i)C_k(L(t_1, \dots, t_n))$. The fact that A_i and hence H_i has rank at least k implies that there exists a specialization of p_i which is not zero. Hence the polynomial

$$P(t_1, \cdots, t_n) = \prod_{i=1}^p p_i(t_1, \cdots, t_n)$$

is not zero. It follows from a standard theorem on polynomials that there exist nonzero elements ξ_1, \dots, ξ_n in Ω for which $P(\xi_1, \dots, \xi_n) \neq 0$. In other words, there exist nonzero ξ_1, \dots, ξ_n in Ω for which every entry in the first row of each of $C_k(H_iL(\xi_1, \dots, \xi_n))$ is nonzero, $i = 1, \dots, p$. This means that every set of k columns of each of $H_iL(\xi_1, \dots, \xi_n)$ is linearly independent and proves the result.

The rest of the results announced above follow from Theorem 1.

REFERENCE

1. J. Williamson, Matrices whose sth compounds are equal, Bull. Amer. Math. Soc. 39 (1933), 108-111.

University of California, Santa Barbara