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1. Results. Let R be a field containing a real closed subfield Ro. The 
main results of this announcement follow. 

THEOREM 1. Let Ai, A2, • • • , ApbemXn matrices with entries in an 
infinite subset 12 of R containing the natural numbers in Ro. Let k be a 
positive integer and assume that the rank of each A »• is at least k. Then 
there exist nonsingular matrices E and F with entries in Q such that every 
set of k rows (columns) of EAiF is linearly independent, i— 1, • • • , p. 

COROLLARY 1. If the matrices Ai, • • • , Ap in Theorem 1 each have 
rank precisely k then every k-square subdeterminant of EA iF is nonzero, 
* = 1 . • • • >P-

THEOREM 2. If Ai, • • • , Ap are n-square complex hermitian matrices 
all of rank at least k then there exists a nonsingular matrix E such that 
every set of k rows (columns) of E*AiE is linearly independent. 

In 1933, J. Williamson [ l ] gave necessary and sufficient conditions 
for the compounds of two matrices to be equal. The nontrivial part of 
his result states the following: if A is a complex matrix of rank r and 
r>m then Cm(A) = Cm(B) if and only if A ~zB where zm = 1. A result 
closely connected to Theorem 1 and generalizing the Williamson 
result can be proved. We state our theorem in an invariant setting. 

Thus, let V be an w-dimensional space over the complex numbers, 
let H be a subgroup of the symmetric group Sm, m^n, and let x b e a 
complex valued character of degree 1 on H. A multilinear function 
f(vi, • • • ,vm) is symmetric with respect to H and % if ƒ (^CD, • • • >sV(m)) 
— xWffyh ••• ,»»») for all Vu • • • , vm in F and all crÇzH- Let P be a 
vector space and ƒ a fixed multilinear function symmetric with respect 
to H and x> ƒ• ^ X • • • X F—>P, such that for any multilinear func­
tion g, g: VX • • • X V—»Z7, also symmetric with respect to H and x> 
there exists a linear h: P—>U that makes the following diagram com­
mutative: 

1 This research was completed under Grant AFOSR 698-67 awarded by the Air 
Force Office of Scientific Research. 
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V X • • • X V-^+P 

(1) ) 

u 

Then the pair P , ƒ is called a symmetry class of tensors associated with 
i l a n d x , e.g., H=Sm, X = sgn, P = AmV,f(vh • • - ,vw)=»iA • • • A»m, 
the usual wth Grassmann product. If T is a linear transformation on 
V then one defines a linear transformation A via the diagram (1) with 
U=P, g(vi, • • • , vm) =f(Tvi, • • • , 7Vm). In this case h is called the 
transformation induced by J1 and will be denoted here by K(T). If 
P = /\mV then i ? ( r ) is the wth compound of T, Cm(T). Another ex­
ample: if H is the identity group then P— ®JLi F, the mth tensor 
space over V, and K(T) = Um(T), the mth Kronecker power of T. 

We have the following generalization of Williamson's result to an 
arbitrary symmetry class of tensors as described above. We do not 
present a proof here but this generalization depends directly on 
Theorem 1 for the case p = 2. 

THEOREM 3. If the rank of T is r and r>m, then K(T) —K(S) if and 
only if T = zS where zm=l. 

COROLLARY 2. If V is a unitary space, the rank of T is r, and r>m, 
then T is normal if and only if K(T) is normal. 

2. Proof outline. We say that a set oimXn matrices (Ah • • • , Ap) 
have property Rk if there exists a nonsingular ^-square matrix F such 
that every set of k columns of A iF, i = 1, • • • , p, is linearly indepen­
dent: this is abbreviated (Ai, • • • , Ap)ÇiRk. I t is clear that if we can 
prove that any set of p matrices all of rank at least k satisfy 
(Ai, • • • , Ap)ÇzRk then Theorem 1 will follow. Observe that if 
Su • • • t Sp are nonsingular m-square matrices then 

(2) (SxAh • • 'tSpAJERk 

if and only if (Au • • • » Ap)E:Rk-
Now let L be the ^-square matrix whose (i, j) entry is i\ i, j 

= 1, • • • , n. I t is routine to verify that every subdeterminant of 
every order of L is nonzero. Next, let /i, • • • , tn be independent 
indeterminates over R and define an w-square matrix L(h, • • • , tn) 
over JR[/I, • • • , tn] whose (i,j) entry is td\ i, j= 1, • • • , n. I t follows 
that any specialization of tu • • • , In to nonzero elements of 12 pro-
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duces a matrix every one of whose subdeterminants is nonzero. Ac­
cording to (2) we can take (Ax, • • • , Ap) = (üTi, • • • , Hp) where Hi is 
the Hermite normal form of Ait i = l, • • • , p. Next, consider the 
matrices 5» = i7;Z(/i, • • • 9tn) and define the polynomial pi(h, • • • ,tfn) 
to be the product of all Cn,k entries in the first row of the &th com­
pound matrix of Biy i.e., Ck(Bi) = Ck(Hi)Ck(L(hf • • • , /n)). The fact 
that A i and hence Hi has rank at least k implies that there exists a 
specialization of pi which is not zero. Hence the polynomial 

P(fu ' • * , *») = IT Piih, ' ' • , tn) 

is not zero. I t follows from a standard theorem on polynomials that 
there exist nonzero elements £1, • • • , £n in Q for which P(£i, • • • , £n) 
7^0. In other words, there exist nonzero £1, • • • , £n in Q for which 
every entry in the first row of each of Ck(HiL(l;i, • • • , £n)) is non­
zero, i = 1, • • • , p. This means that every set of k columns of each of 
iJ*L(£i, • • • , £w) is linearly independent and proves the result. 

The rest of the results announced above follow from Theorem 1. 
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