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1. Preliminaries. In [1] the structure of the weakly complex
bordism of 1 connected semisimple Lie groups was studied via the
Milnor, Eilenberg-Moore, Rothenberg-Steenrod sequence. See [1] for
notation. In this paper we amplify the Adams spectral sequence [2],
[3], [4] and relate this tool to the weakly complex cobordism theory.
The techniques apply to any finite CW complex. In particular we
apply them to real projective spaces and to 1 connected compact
semisimple Lie groups.

As in the bordism theory [1], it is useful to introduce coefficients
into the cobordism theory. Z, coefficients arise via [5]. Let

Ay = U*(pt, Zp) = Zp|Vy, Vo, » - | dim V= — 24, =1

and define A,[1/Y,;]=direct lim 1/¥?_ A, A,[1/V,] is the ring
obtained from A, by making ¥,_; a unit. A,[1/¥,_1] coefficients can
be introduced. U*(X, A,[1/Y,-1]) denotes the resulting theory.

The techniques of this paper allow us to extend the theorems in
[1]. For example:

THEOREM 1. Let K be a 1 connected compact semisimple Lie group
and p a prime. Then U*(K, Ap[1/Y,1]) is an exterior algebra over the
coefficient ring Ap[1/ Y, 1] generated by rank K elements (except pos-
sibly for U*(K, Az[1/YV1]) where K contains E; or Es as a factor). See
[1, Theorem 2].

We intend to make further applications in the detailed version of
this paper and remove the “except possibly” statement in the above
theorem.

2. The setting. Let 3 denote the category of CW complexes having
only finitely many cells in each dimension and maps between such
spaces. A spectrum X consists of an integer N and spaces X;E3,
1= N, together with an explicit imbedding SX,—X ;1. Given two
spectra X and Y, a map f: X— Y is an integer M =0 and maps fi: X
—Y,;, 12 M, commuting with suspensions in the obvious way. A
homotopy % between f and g is an integer M’ and homotopies k;
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between f; and g;, 1= M. [X, Y] denotes the set of homotopy classes
of maps from X to V. SX is the spectrum whose 7th space is S*X..
Y® is the spectrum whose sth space is Yy, Define II.(X, Y)
=[SX, Y],r=0,and II,(X, ¥) = [X, Y], »<0. This definition was
motivated by [3] and enjoys the following properties: (1) For the
Eilenberg-MacLean spectrum X (p), K(p)»=K[Z,, n], (X, X(p))
=H-*(W+, Z,) (reduced cohomology is understood). (2) For the
Milnor spectrum M with Map=MU®) and Maya=SMU(n),
(X, M)=U*(W) is the weakly complex cobordism of W. (Here
WES and X;=SWt.)

Given two spectra X and Y there is a new spectrum X A\ Y with
XAY)e@w=X.AY, and (XA Y)en1=X,/AYnu1. The inclusion of
S(X A Y)s, into (X A Y)snqa involves a sign (—1)* while the inclusion
of S(X A Y)an to (X A\ Y)s, is the obvious map. Another spectrum of
importance is T,(W) for W&3, T,(W) is constructed as follows:
Let Z,=S'U,E? be the space obtained from S! by attaching a two
cell by a map of degree p. For WE?3, T,(W) denotes the spectrum
whose ith space T,(W);=S*"2A\AWAZ,, ©=2. Here the smash prod-
uct is taken in 3. Define U*(X, Z,)=II_(T,(W+), M) where W+
=W\Uw, is the space obtained from W by adding a disjoint base
point wy.

Now suppose that p is an odd prime. Then there is map A: T,(IW+)
—T,(WH) AT,(W*). Here is its definition: Z,/A\Z, is homotopically
equivalent to SZ,\/S?Z, so there is a map v: S?Z,—Z,/\Z, which
together with the diagonal map d: W—W AW produces A.

The Whitney sum of two complex vector bundles induces a map
MiNA\M;~M,;;; which in turn provides a map u: M AM—M. The
two maps A and u determine a product in

(T, (W), M) via I(T,(WF), M) Quxr (s0), i Ix(TH(WH), M)

B B 1z, m), 1),

A and p can be used to introduce a product in the Adams spectral
sequence. This product is even defined in the E; term of Milnor [4].
These statements are made under the supposition that » was an odd
prime. They remain true, however, for p =2 but the product is not
induced by a map Tp,(W)—T,(W)ATp(W). Another route must be
taken. It will be exposed elsewhere.

The most convenient form of the results of the homological analysis
of the situation is the following: Let X be a finite CW complex and
Q: be the Milnor cohomology operation [4].
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THEOREM 2. Let p be any prime. There is a spectral sequence of alge-
bras comverging to U*(X, Z,) whose E; term is A,®z,H*(X*, Z,)
(recall reduced cohomology is assumed) as an algebra; moreover, di is the
A, morphism defined by dix=2Z;4Ypi1Qix for xEH*(X+, Z,). This
theorem is true for the theory U*(X, A,[1/V,a]) by replacing A, by
Ay [1/ Yp—l] .

Suppose now that X is a finite dimensional H space. The multipli-
cation % can be used to define a coproduct in U*(X, A, [1/Y,-1]) and

THEOREM 2’. The E: term of this spectral sequence is A,[1/YVp_4]
® ., ,H*(X+, Z,). The coproduct is 1 @u* and d is a differential of Hopf
algebras over Ay[1/Y,1]. If E. is free over A,[1/Y,1], then E, is a
Hopf algebra and d. is a differential of Hopf algebras.

There is a map of spectra from M to the Eilenberg-MacLane spec-
trum K [Z] which induces u,: U*(X, Z,)—H*(X, Z,). up is a natural
transformation of cohomology theories.

CoROLLARY 3. Let XE3. If any of the operations Q; are nonzero in
H*(X, Zp), up is not onto.

3. Applications. In order to conclude Theorem 1, it suffices to
consider the groups SU(#), Sp(z), Spin(n) and the five exceptional
groups. Really we must establish the results for pairs (K, p) where K
is one of the above list of groups and p is prime. The pairs not in-
cluded in [1] are (Es, 3), (F4, 3), (Es, 2) and (E, 2). Using the knowl-
edge of the cohomology of these groups and tools above we find :

THEOREM 4. U*(Es, Aa [1/ Yz]) =A3 [1/ Y2] ®z3 E(’)ﬁ, N9, M9y, No1,y
sy Mary Nary Mss); U*(Fay As[1/73]) = As[1/ V2] © zsE (1, 11, s, M1o) s
algebras over As[1/Y,]. The subscripts refer to the dimensions of the
generators and E is the exterior algebra functor.

Our tool applies particularly well to Spin(z) and SO(%). The bord-
ism of the first was adequately taken care of in [1]. We deal with
SO(n) elsewhere. Let RP* be real projective # space.

THEOREM 5. There is a filiration of U*(RP», Z.) such that
Eo U*¥(RP*, Z,) has this description: (a) n odd E, U*(RP», Z,)
=AM ®Z,[W, Y]/I where W has dim 2 Y has dimension n—2 and I s
the ideal generated by W+l W2V, V2 and ¢pn=2m1 YVoiaW?'; (b) n
even Eo U*(RP*, Zy)=AQ®Z,[W, Y]/I where W is of dim 2, ¥ of
dim n—1 and I is the ideal generated by Wr+22, WY, V2 and ¢,.
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