A COMMUTATIVE SEMISIMPLE ANNIHILATOR BANACH ALGEBRA WHICH IS NOT DUAL

BY B. E. JOHNSON

Communicated by E. Hewitt, December 7, 1966

Barnes [1] has constructed an example of a commutative semisimple normed annihilator algebra which is not a dual algebra. His example is not complete and when completed acquires a nonzero radical. In this paper we construct an example which is complete. The theory of annihilator algebras is developed e.g. in [2].

We put $\alpha_i = (1 + (1+i)^{-1/2})^{-2}$ for $i \ge 1$ and denote by A_0 the algebra of doubly infinite sequences a with $a_i = 0$ for all but a finite number of values of i, with coordinatewise addition and multiplication. We define a norm on A_0 by

$$||a|| = 3 \left(\sum_{n \le 0} |a_n|^2 \right)^{1/2} + 3 \sup_{n > 0} |a_n \alpha_n^{-1} - \sum_{j=-n}^0 a_j|.$$

This is easily seen to be a linear space norm on A_0 and we have that

(i)
$$\left(\sum_{n \le 0} |a_n b_n|^2 \right)^{1/2} \le \left(\sum_{n \le 0} |a_n|^2 \right)^{1/2} \left(\sum_{n \le 0} |b_n|^2 \right)^{1/2}$$

$$\le \frac{1}{9} ||a|| ||b||;$$

(ii) if n > 0,

$$\frac{1}{3} ||a|| \ge |a_n \alpha_n^{-1} - \sum_{j=-n}^0 a_j|$$

$$\ge |a_n| \alpha_n^{-1} - (n+1)^{1/2} \frac{1}{3} ||a||$$

so that

$$|a_n|\alpha_n^{-1} \le \frac{1}{3}(1+(n+1)^{1/2})||a||$$

and

$$\begin{vmatrix} a_n b_n \alpha_n^{-1} \end{vmatrix} \leq \frac{1}{9} \alpha_n (1 + (n+1)^{1/2})^2 ||a|| ||b||$$

= $\frac{1}{9} ||a|| ||b||;$

(iii)
$$\left| \sum_{j=-n}^{0} a_{j}b_{j} \right| \leq \left(\sum_{j=-n}^{0} \left| a_{j} \right|^{2} \right)^{1/2} \left(\sum_{j=-n}^{0} \left| b_{j} \right|^{2} \right)^{1/2} \leq \frac{1}{9} ||a|| ||b||.$$

The submultiplicative property of $\|\cdot\|$ follows easily from (i), (ii) and (iii).

Consider now the space $l_2(-\infty, 0) \oplus c(1, \infty)$, which we consider as a space of doubly infinite sequences, with norm as the sum of the l_2 norm and the sup norm. For $a \in A_0$ define $T_0 a$ by

$$(T_0 a)_n = 3^{1/2} a_n$$
 for $n \le 0$,
= $3 a_n \alpha_n^{-1} - 3 \sum_{j=-n}^{0} a_j$ for $n > 0$.

 T_0 is then a linear isometry; $A_0 \rightarrow l_2(-\infty, 0) \oplus c(1, \infty)$. The multiplicative linear functionals on A_0 are

$$\phi_i(a) = a_i$$

and if the functionals ψ_i on $l_2 \oplus c$ are defined by

$$\psi_{i}(c) = c_{i}/3^{1/2} \quad \text{for } i \leq 0,$$

$$= \left(c_{i} + (3^{1/2}) \sum_{i=-i}^{0} c_{i}\right) \alpha_{i}/3 \quad \text{for } i > 0,$$

then the ψ_i are continuous and $T_0^*\psi_i=\phi_i$. The set $\{\psi_i; i\in \mathbb{Z}\}$ is clearly total on $l_2\oplus c$.

Let now A be the completion of A_0 ; T_0 extends to an isometry T; $A \rightarrow l_2 \oplus c$, the ϕ_i extend to multiplicative linear functionals on A and $\phi_i = T^*\psi_i$. Since the ψ_i are total on $l_2 \oplus c$, the ϕ_i are total on A and A is a semisimple Banach algebra. Writing $a_i = \phi_i(a)$ for $a \in A$ we can consider the elements of A as doubly infinite sequences and the two ways in which an element of A_0 becomes a sequence give the same sequence.

If δ_i is the sequence in A_0 with $(\delta_i)_j = \delta_{ij}$ (the Kronecker symbol) then $a\delta_i = a_i\delta_i$ for all a in A so that if J is an ideal in A either $\delta_i \in J$ or $\delta_i J = \{0\}$. Thus if J is a closed ideal in A with zero annihilator then all the δ_i are in J, $A_0 \subset J$ and J = A. Hence A is an annihilator algebra.

The span J_0 of the set $\{\delta_i; i>0\}$ is an ideal in A and thus so is its closure J. The annihilator of J is

$$K = \{b: b \in A, b_i = 0 \text{ for } i > 0\}$$

and the annihilator of K is

$$\tilde{J} = \{c: c \in A, c_i = 0 \text{ for } i \leq 0\}.$$

The norm on \mathcal{J} is given by $||c|| = \sup |c_i/\alpha_i|$ and since $a_n = o(\alpha_n)$ as $n \to \infty$ for $a \in J_0$ we have $a_n = o(\alpha_n)$ for $a \in J$. Define a sequence x_n from A_0 by

$$(x_n)_i = -1/(n+1), \quad -n \le i \le 0,$$

= 0, $i < -n,$
= $\left(1 + \sum_{i=-i}^{0} x_{ni}\right) \alpha_i, \quad i > 0.$

Then, since the supremum term is 0,

$$||x_{m} - x_{n}|| = 3 \left(\sum_{i \leq 0} |x_{mi} - x_{ni}|^{2} \right)^{1/2}$$

$$\leq 3 \left(\sum_{i \leq 0} |x_{mi}|^{2} \right)^{1/2} + 3 \left(\sum_{i \leq 0} |x_{ni}|^{2} \right)^{1/2}$$

$$= 3(m+1)^{-1/2} + 3(n+1)^{-1/2},$$

so that x_n converges to a limit y in A. We have

$$y_i = \lim_n x_{ni} = 0,$$
 if $i \le 0$,
= α_i , if $i > 0$.

Clearly $y \in \tilde{J}$ but $y_i = \alpha_i \neq o$ (α_i) so that $y_i \notin J$, the ideal J is not an annihilator and A is not a dual algebra.

The question of the existence of simple annihilator Banach algebras which are not dual remains open!

REFERENCES

- 1. B. A. Barnes, An annihilator algebra which is not dual, Bull, Amer. Math. Soc. 71 (1965), 573-576.
- 2. C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.

THE UNIVERSITY, NEWCASTLE UPON TYNE, ENGLAND.