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We shall describe the structure of a certain kind of Hopf algebra 
over an algebraically closed field k of characteristic p, namely those 
Hopf algebras whose coalgebra structure is commutative and which 
have an antipodal map S: H—>H. (See below for definitions.) Such 
a Hopf algebra turns out to be of the form kG # U% the smash product 
of a group algebra with a Hopf algebra whose coalgebra structure is 
"like" that of a universal enveloping algebra. If p = 0 the second 
factor actually is a universal enveloping algebra. 

For p>0, we generalize the Birkhoff-Witt theorem by introducing 
the notion of divided powers. These also play a role in the theory of 
algebraic groups where certain sequences of divided powers corre­
spond to one parameter subgroups. The divided powers appear in a 
"Galois Theory" for all finite normal field extensions. 

The structure theory of Z2-graded coanticommutative Hopf alge­
bras is similar, and mentioned below. 

Lemma 1, Theorem 1, its generalization to the graded case, and 
Theorem 2 are unpublished results of B. Kostant, whose guidance 
we gratefully acknowledge. 

1. H is a cocommutative Hopf algebra with multiplication m, aug­
mentation e and diagonal d. 

DEFINITION. An element gÇzH is grouplike if dg — g®g and g^O. 

LEMMA 1. The set G of grouplike elements of H form a multiplicative 
semigroup whose elements are linearly independent in H. For each 
gÇzG there exists a unique maximal coalgebra H°QH whose only group­
like element is g, H^ @H° as a coalgebra, and H°HhC.Hoh. 

DEFINITION. S: H-+H is an antipode if 

m o (I®S) od = e= m o (S®I) od. 

THEOREM 1. If H has an antipode G is a group and S(g) =g~1. If e 
is the identity of G, H° = gHe = Heg, and H^kG # He as a Hopf algebra. 

REMARK. Since g-lHeg = IIe, the elements of G act as Hopf algebra 
automorphisms of He and so we can form the smash product kG % He. 

1 Part of the research described here was done while the author held an N.S.F. 
Graduate Fellowship. 
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(As a coalgebra this is kG®He, (l®ti)(g®l)~(g®g-lhg) gEG, 
hEB:) 

If F is a cocommutative Hopf algebra with one grouplike element, 
G a group of Hopf algebra automorphisms of F then kG% F has a 
unique antipode. 

In the Z2-graded coanticommutative situation, G C Ho, He 

= (H6r\H0)@(Her\Hi)> If H has an antipode, G is a group and 
H^kG # He as a graded Hopf algebra. 

2. We now determine the structure of H% i.e. we consider a Hopf 
algebra H with one grouplike element. 

THEOREM 2. If p = 0, H is the universal enveloping algebra of the 
Lie algebra L (under [ , ]), where 

L = {% E H\ dx = * ® 1 + 1 ® %}. 

DEFINITION. For arbitrary p the elements of L are called primitive. 
If p>0, L is a restricted Lie algebra but H is not necessarily its re­
stricted universal enveloping algebra. However, using the Birkhoff-
Witt theorem we can get a form of Theorem 2 which does generalize 
to p>0. Namely it says for p = 0, H = ®Cy as a coalgebra, where Cy 

is the subspace of H spanned by the elements ely = le
y/e\ e = 0, 1, • • • 

and {ly} is a basis for L. Note that Cy is a coalgebra because dely 

DEFINITION. A finite or infinite sequence of elements 1 = °/, ll, 
H, • • • is called a sequence of divided powers of H if dnl~ ^Zo il®n~iL 

Given an indeterminate x, let Jff" be the Hopf algebra with a basis 
of indeterminates % i = 0, 1, 2, • • • , the algebra structure is deter­
mined by *xJ'x = C¥)xi+' and the coalgebra structure is determined by 
°x, lx, • • • , which is a sequence of divided powers of lx. H p>Q we 
let H% be the sub-Hopf algebra spanned by X, X, • » • i P ^X» 

Let uT = Hom(iJ, Jfe) have the algebra structure "transpose" to 
the coalgebra structure of H. Thus for a', b'EH', a1 * b' is the map 
(a'®b') od:H—>k. H' is a commutative algebra since H is cocom­
mutative. 

THEOREM 3. jFör p > 0, ZeJ 7n C J?' &£ ffte idea/ generated by 
{a'EH'\a'*>n = 0}. If the sequence of ideals I1 EI2 E • • • terminates, 
then H^®HZ* as a coalgebra, for some set of elements {x} and positive 
integers (or <*>), {nx}. 

If Jx = 0, H=®H™ as a coalgebra, where we may choose {x} to be 
a basis for L. 
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If Il = {a' EH71 a'(l) = 0}, then H is the restricted universal envelop­
ing algebra of L. So H=®HJ as a coalgebra, where {x} is a basis for L. 

The techniques involved in proving Theorem 3 yield information 
about sequences of divided powers lying above an element of L. For 
example, IÇzL is orthogonal to In if and only if I lies in a sequence of 
divided powers °Z, lJ = Zf % • • -*n+1-H. 

In the coanticommutative situation the Hopf algebra H contains 
a unique maximal sub Hopf algebra F(ZH0. Theorem 2 or 3 applies to 
F. If LQ — LCSHQ and Li = LfWi then L~L0®Li and L is a graded 
Lie algebra. If ALi is the exterior algebra on L\ then H^F®KL\ as a 
coalgebra. If p = 0, H is the graded universal enveloping algebra of L. 
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