COCOMMUTATIVE HOPF ALGEBRAS WITH ANTIPODE

BY MOSS E. SWEEDLER¹

Communicated by A. Mattuck, June 1, 1966

We shall describe the structure of a certain kind of Hopf algebra over an algebraically closed field k of characteristic p, namely those Hopf algebras whose coalgebra structure is commutative and which have an antipodal map $S \colon H \to H$. (See below for definitions.) Such a Hopf algebra turns out to be of the form $kG \sharp U$, the smash product of a group algebra with a Hopf algebra whose coalgebra structure is "like" that of a universal enveloping algebra. If p=0 the second factor actually is a universal enveloping algebra.

For p>0, we generalize the Birkhoff-Witt theorem by introducing the notion of divided powers. These also play a role in the theory of algebraic groups where certain sequences of divided powers correspond to one parameter subgroups. The divided powers appear in a "Galois Theory" for all finite normal field extensions.

The structure theory of Z_2 -graded coanticommutative Hopf algebras is similar, and mentioned below.

Lemma 1, Theorem 1, its generalization to the graded case, and Theorem 2 are unpublished results of B. Kostant, whose guidance we gratefully acknowledge.

1. H is a cocommutative Hopf algebra with multiplication m, augmentation ϵ and diagonal d.

DEFINITION. An element $g \in H$ is grouplike if $dg = g \otimes g$ and $g \neq 0$.

LEMMA 1. The set G of grouplike elements of H form a multiplicative semigroup whose elements are linearly independent in H. For each $g \in G$ there exists a unique maximal coalgebra $H^o \subset H$ whose only grouplike element is g. $H \cong \bigoplus H^o$ as a coalgebra, and $H^o H^h \subset H^{gh}$.

DEFINITION. S: $H \rightarrow H$ is an antipode if $m \circ (I \otimes S) \circ d = \epsilon = m \circ (S \otimes I) \circ d$.

THEOREM 1. If H has an antipode G is a group and $S(g) = g^{-1}$. If e is the identity of G, $H^g = gH^e = H^eg$, and $H \cong kG \# H^e$ as a Hopf algebra.

REMARK. Since $g^{-1}H^eg = H^e$, the elements of G act as Hopf algebra automorphisms of H^e and so we can form the smash product $kG \# H^e$.

¹ Part of the research described here was done while the author held an N.S.F. Graduate Fellowship.

(As a coalgebra this is $kG \otimes H^e$, $(1 \otimes h)(g \otimes 1) = (g \otimes g^{-1}hg)$ $g \in G$, $h \in H^e$.)

If F is a cocommutative Hopf algebra with one grouplike element, G a group of Hopf algebra automorphisms of F then $kG \not\equiv F$ has a unique antipode.

In the Z_2 -graded coanticommutative situation, $G \subset H_0$, $H^e = (H^e \cap H_0) \oplus (H^e \cap H_1)$. If H has an antipode, G is a group and $H \cong kG \# H^e$ as a graded Hopf algebra.

2. We now determine the structure of H° , i.e. we consider a Hopf algebra H with one grouplike element.

THEOREM 2. If p=0, H is the universal enveloping algebra of the Lie algebra L (under [,]), where

$$L = \{x \in H \mid dx = x \otimes 1 + 1 \otimes x\}.$$

DEFINITION. For arbitrary p the elements of L are called *primitive*. If p>0, L is a restricted Lie algebra but H is not necessarily its restricted universal enveloping algebra. However, using the Birkhoff-Witt theorem we can get a form of Theorem 2 which does generalize to p>0. Namely it says for p=0, $H=\otimes C_{\gamma}$ as a coalgebra, where C_{γ} is the subspace of H spanned by the elements ${}^{e}l_{\gamma}=|l_{\gamma}^{e}/e|$ e=0, $1, \cdots$ and $\{l_{\gamma}\}$ is a basis for L. Note that C_{γ} is a coalgebra because $d^{e}l_{\gamma}=\sum_{0}^{e}il_{\gamma}\otimes {}^{e-i}l_{\gamma}$.

DEFINITION. A finite or infinite sequence of elements 1 = 0l, 1l, 2l, \cdots is called a sequence of divided powers of 1l if $d^n l = \sum_{j=0}^{n} il \otimes_{j=1}^{n} l$.

Given an indeterminate x, let H_x^{∞} be the Hopf algebra with a basis of indeterminates ix, $i=0, 1, 2, \cdots$, the algebra structure is determined by $ix^ix = \binom{i+j}{j}x^{i+j}$ and the coalgebra structure is determined by 0x , 1x , \cdots , which is a sequence of divided powers of 1x . If p>0 we let H_x^{n} be the sub-Hopf algebra spanned by 0x , 1x , \cdots , ${}^{p^{n-1}}x$.

Let H' = Hom(H, k) have the algebra structure "transpose" to the coalgebra structure of H. Thus for a', $b' \in H'$, a' * b' is the map $(a' \otimes b') \circ d: H \rightarrow k$. H' is a commutative algebra since H is cocommutative.

THEOREM 3. For p > 0, let $I^n \subset H'$ be the ideal generated by $\{a' \in H' | a'^{p^n} = 0\}$. If the sequence of ideals $I^1 \subset I^2 \subset \cdots$ terminates, then $H \cong \otimes H_x^{n_x}$ as a coalgebra, for some set of elements $\{x\}$ and positive integers (or ∞), $\{n_x\}$.

If $I^1=0$, $H\cong \otimes H_x^{\infty}$ as a coalgebra, where we may choose $\{x\}$ to be a basis for L.

If $I^1 = \{a' \in H' \mid a'(1) = 0\}$, then H is the restricted universal enveloping algebra of L. So $H \cong \otimes H'_x$ as a coalgebra, where $\{x\}$ is a basis for L.

The techniques involved in proving Theorem 3 yield information about sequences of divided powers lying above an element of L. For example, $l \in L$ is orthogonal to I^n if and only if l lies in a sequence of divided powers 0l , ${}^1l = l$, 2l , 1l , 1l .

In the coanticommutative situation the Hopf algebra H contains a unique maximal sub Hopf algebra $F \subset H_0$. Theorem 2 or 3 applies to F. If $L_0 = L \cap H_0$ and $L_1 = L \cap H_1$ then $L = L_0 \oplus L_1$ and L is a graded Lie algebra. If ΛL_1 is the exterior algebra on L_1 then $H \cong F \otimes \Lambda L_1$ as a coalgebra. If p = 0, H is the graded universal enveloping algebra of L.

BIBLIOGRAPHY

- 1. E. Halpern, Twisted polynomial hyperalgebras, Mem. Amer. Math. Soc. No. 29, 1958.
- 2. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY