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A classical theorem of Fatou [2, p. 99] asserts that if f&EL(0, 2)
and the symmetric derivative of f at x,

f1 (w0) = lim [f(xo + B) — f(%o — B)]/2

exists, then the differentiated Fourier series of f is Abel summable to
f1 (x0) atxo, or equivalently, if u(r, ) =ao/2+ D (ax cos kx -+ b sin kx)r*
is the associated harmonic function, then
Hm  u,(r, 20) = fi (x0).
r—1-0
Let us suppose that ¢ is a real nonnegative function on an interval

to the right of the origin, that ¢(0) =0, and that ¢(¢) =0() as {—0.
We say that a set is ¢-dense at a point p if

m(E° M I)/¢p(m(I)) — 0

as m(I)—0, I an interval containing p. If ¢ is the identity function,
this reduces to ordinary metric density. In the case ¢(f) =t=, we will
say that E is a-dense at p. Proceeding in a manner entirely analogous
to the classical definition of approximate limit and derivative, we
say that

o-lim,, g(f) = a

t—to

if for every €>0, Es= {t| | g(t) —a| <e} is ¢-dense at to, and we define
the ¢-approximate symmetric derivative,

dfape(t)) =  ¢-limay [f(mo + k) — f(wo — B)]/2R.
B—0

We restrict our attention here to the case of most immediate interest,
a-density, and prove the following

THEOREM. Suppose f is in L(0, 21), of period 2w, essentially bounded
in a neighborhood of xo, and, for some =2, y=0a-fi,(x0). Then the
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differentiated Fourier series of f is Abel summable to y at xo. The value
2 cannot be replaced by a smaller value nor can essentially bounded be
replaced by integrable.

Ikegami [1] has shown that f/ cannot be replaced by fJ, in
Fatou's theorem, even if f is bounded. He introduced

o-fop(%0) = a;lim [f(xa+h) —f(x0) ] /B

~0ap

and attempted to show that, for bounded f, Fatou’s theorem holds
with this derivative if @>4. His argument, however, contains an
error, and when it is corrected yields this result only for a>35.

Turning to the proof of our result, we may suppose that x,=0,
f(0) =0, and also a-f/,,(0) =0 as in the classical case [2, p. 100-101].
For the Poisson kernel,

1 1 — 72
P, f) = —- ’
2 1 —2rcost+r2

we have the estimates
P(r,t) < Co/(* + ), | Pur,®)| < Cut/(n* + 19,

where 9 =1—r and, throughout this paper, C will denote a positive
constant not necessarily the same at each occurrence. The first esti-
mate here is well known; the other may be obtained in a similar
manner.

We may assume a =2, for if a-f},(0) exists for some a>2, it also
exists and has the same value for a=2.

There isa 6,>0 and an M >0 such that [f(x)| < M a.e. in (— 8y, 89).
Now

1 L 4
i, O = — = f () — J(=) Pulr, it

and, for any §&(0, 8,), we may partition the interval of integration
into (0, d), (8, 8o), and (8o, w), denoting the absolute values of the
above integral over these intervals by 41, 92, and g; respectively. We
show that these values can be made arbitrarily small by choosing 7
sufficiently close to 1.

Clearly

92 = 2M f [ Po(ry 1) !dl < Cné™?
]

and
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6 < f 150 = 1=0| 1P, 0|
= | f0) — f(=1)|
ta

L1}

< Cq dt < Cq.

Given an €>0, we set

E={t| | [f&) — /(=9]/2t] 2 ¢}.

TR R S W
En(0,3) E*n(0,3)

Then

9 =

and we have
t} x
4{' = ef 2t| Py(r, 1) |dt < — Zef tP(r, t)dt < Ce
0 0

by an integration by parts.
The estimation of g/ is somewhat more difficult.
We now choose 8 such that, for :& (0, 6),

m(EMN (0, 1)) < &2

Let £4=40 and choose #, k=2, 3, - - -, in (0, §), decreasing and con-
verging to zero. We let Iy = (41, &). Then

s{ < MCn f 4 (né + 19t

En(0,3)
< Cn X m(EN I)/(n* + tens) < Cne 2 t/(n* + ths).
Now let ,=0/2%1, 1t is easily verified that
7 [ ot > 1/t + k)
k
for every k and, therefore,
g{ < Cne ]; eot2/(7;‘+ t9dt < Ce.

Thus
| #a(r, 0) | < Cle + 1 + 152 < Ce
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if  is sufficiently small, the constant being independent of the choice
of e

Suppose now that a&[1, 2) and choose BE (o, 2). Let I,=(1/2",
1/2741/28%) and E=UI,. Then if 1/2*<¢<1/271, there exist posi-
tive constants C and C’ such that

C/26» < m(ENM (0, 1)) < C'/28»
for every n. Thus m(EN(0, ¢)) =o0(t=) as t—0. If f=xg, the character-
istic function of E, then for sufficiently small ¢>0,
{tl |0 —f(=nl/2t| 2z ¢} = E
and so
o = faps(0) = O.
For 0<a <b <w/2, it may be shown that

b @@+ 80— a
- P d Cpyr ——— .
f.. e

Thus, if n=2"*, we have

1 1
uz(r, 0) = - ‘;'r" E f P,(r, t)dt > - — Pg(f, t)dt
I,

T VI
> C2-G+Dk/(2—4k - (2-UHD) . 2—BUHD))4)
> C2EHk — o

as k— o, which shows that values of @ <2 are inadmissible.
Finally suppose =2, 8>a, and define E as above. Now let
f= EZW“‘)"X[”. Then fEL(0, 27) and a-f,,,(0) =0. However,

u,(r, 0) > — 26-DEV P (r, t)dt

Tper
> C26-D G+ . 2@k = C2% — oo
as k— o, which shows that the requirement of essential boundedness
cannot be removed.
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