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The main result, an estimate of the cardinality of the set of all 
ultrafilters producing a given type of ultrafilter (see definition 1.4 and 
Theorem C in 1.4), is illustrated by a proof of nonhomogeneity of 
(iN—N (see 2.1) without using the continuum hypothesis, and by an 
exhibition of the following two examples. 

THEOREM A. For each positive integer n there exists a space X such 
that Xn is countably compact but Xn+1 is not. 

THEOREM B. There exists a space Y such that each finite product Yn 

is countably compact but Y^° is not. 

By a space we mean a separated uniformizable topological space; 
and Zm stands for the product of any constant family {z\a^A } such 
that the cardinal of A is m. 

In our examples the spaces Xn+1 in A and F^° in B are not pseudo-
compact. An exhibition of A and B with countably compact replaced 
by pseudocompact is done in [3]; it does not require Theorem C. 
Trivial examples of spaces with properties in A and B do not seem to 
be available. 

Observe the proof of A and B reduces to the following. 

THEOREM A''« For each positive integer n there exist spaces XXI), • • • , 
X(n+1) such that the product of any family \X{kJ)\i — li • • • , n] 
is countably compact but the product {X(J)\j^n+l} is not countably 
compact. 

THEOREM B'. There exists a sequence { Y (J)} of spaces such that 
the product of any finite subfamily is countably compact but the product 
of{Y(j)} is not. 

Indeed, for an X in A take the sum of spaces X(J) with properties 
in A'. For Y in B take a one-point countable-compactification of the 
sum of a sequence { Y(J)} with properties in B'; then the product of 
{(j) X Y(J)} is a closed subspace of F. 

REMARK. In addition, we shall exhibit { Y(j)} such that the prod­
uct of any proper subfamily (e.g* { Y(j)\j*z2}) is countably com­
pact. On the other hand there exists a sequence { Y(j)} such that the 
product of a subfamily is countably compact if and only if the sub­
family is finite» 
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In what follows N denotes the set and the discrete space of natural 
numbers, (3N the Stone- Cech compactification of N such that NC.J3N 
and the points of /3JV—N are free ultrafilters on N, iV* = fiN—N, P the 
set of all permutations of N, ƒ* with ƒ in P the continuous extension 
of ƒ to a mapping (homeomorphism) of &N onto itself, and P * the 
set of a l l / * with ƒ in P . 

1. Types and production of types. Recall that the cardinal of /3JV is 
exp exp fc$o, the cardinal of every dense set in N* is at least exp N0, 
and any discrete countable subset of j3iV is normally embedded in f3N. 

1.1. Let T be a set and r be a mapping of N* =j3iV—N onto T such 
that TX = ry if and only if p*x = y for some p in P . The elements of T 
are called the types of ultrafilters on Nf and if t=rx then / is called 
the type of x and x is said to be of type /. The set r _ 1 [ (0 ] oî all 
x(£N* of type t is of cardinal expN 0 because the cardinal of P is 
exp No and T""*1)^)] is clearly dense in N*. I t follows that the cardinal 
of T is exp exp fc$ o. 

If I f is any countable infinite set and ƒ : M—*N is a bijective map­
ping then the type of any free ultrafilter x on M is defined to be the 
type of the "image" of x under ƒ. Clearly the definition does not de­
pend on ƒ. 

1.2. If X is any collection of ultrafilters on a set M and if y is an 
ultrafilter on X then the sum of X, with respect to y designated by 
]>jy X, is defined to be the collection z of all sets of the form 
U{Ma . | #£F} where Y&y and MxE.x for each x in Y. I t is easy to 
show that z is actually an ultrafilter on M. A collection X of ultra-
filters is called to be discrete if there exists a disjoint family {Mx \ x (~X} 
with Mx&x. In a natural way we apply those definitions to a one-to-
one family \xa} of ultrafilters and an ultrafilter on the index set. 

Now let \xn} and {#» } be two discrete sequences of ultrafilters 
on a countable set M such that TXn = = TXri for each n. Then the sums 
X)w {x*} a n d ]C» {xn} are of the same type for any ultrafilter y on 
N, and so we may introduce the following definition. 

1.3. DEFINITION. If {jn} is any sequence of types and y is any 
ultrafilter on N then the sum t of {tn} with respect to y is designated 
by 2 y {tn} and defined to be the type of any ]T)y {xn} with {xn} 
a discrete sequence of ultrafilters such that r#» = /n. I t is clear that 
then any x of type t is of the form ^y {xn}. 

Now we are prepared to introduce the main concept—the produc­
ing relation. 

1.4. DEFINITION. The producing relation <j> on T is defined to be 
the set of all pairs (u, v) such that v= ^ v {tn} for some y of type u 
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and some sequence {tn} in T. Thus, the domain of </> is T, its range is 
contained in T and <£[(/)] =E{ ]Cy {M I^G*}. The symbol (u, v)E:<t> 
will often be read either "u produces v" or <(v is produced by u." The 
main result reads as follows. 

THEOREM C. Any type is produced by at most exp fc$0 types, and any 
type produces exp exp N0 types, i.e. card 0""1[(/)] ^ exp fc$0, card <£[(0] 
= exp exp fc$ 0 for any type t. 

The proof will be given in 1.7 and 1.9 below after we develop a 
topological interpretation of the relation <j>. 

1.5. I t is easy to see that a countable XC.N* is a discrete subset 
of the topological space ]8iV if and only if X is discrete in the sense 
of 1.2, and that cl X is homeomorphic to /3iV if X is infinite. Thus 
given a z in cl X—X, the traces of neighborhoods of z on X form an 
ultrafilter zx on X whose type will be denoted by Txz and called the 
type of z relative to X. Clearly 2= ^2zX X a n d so {rxz, /S)G<£. If y 
is any free ultrafilter on X then z= ^y X belongs to cl X—X and 
y = zx. 

Now let {tn} be any sequence of types and t be a type. Choose a 
discrete sequence {xn} of representatives (that means rXn — L), and 
consider the set of all xn. The set of all ]>2V {/»}, ry = ty coincides 
w i t h t h e s e t E { r 2 | s G c l Z ~ Z , r x 2 = = ^ } . S o ^ [ ( 0 ] = = £ { T 2 | 2 G c l X - - X , 
rxz — t for some discrete countable XÇ.N*}. In what follows we shall 
use that topological interpretation without any reference. 

1.6. Let {Mn} be a countable decomposition of N and let xM, 
3>nGcl Mn — Mn. If XnT^yn for each w then cl E{x»}P\cl £{y n } = 0 
and conversely. The proof is evident. 

1.7. The second statement of Theorem C follows immediately from 
6. Indeed taking any decomposition {Mn} of N with all Mn infinite, 
we have card cl Mn — Mn — exp exp fc$ 0 for each n and therefore we get 
exp exp fc$o disjoints sets cl X = cl E{x n} each containing at least one 
point y with rxy = t, which is of type in <j> [(/)]. Since ca rdr"" 1 ^) ] 
= exp No, the result follows. 

To prove the first statement of Theorem C we need the following 
lemma. 

1.8. Let yE:PN~N. There exists a set 9C, card 9Cgexp No, of dis­
crete countable subsets X of (3N—N such that if F is any discrete 
countable subset of j8iV—iV, and if y Gel F— F, then Y^)X for some 
ZG9C. 

PROOF. For each countable decomposition {Mn} of N choose an 
a;nGcl Mn — Mn such that yÇiclX—X, if possible, and take all 
X'CX with y Gel X'-X. The set 9C of all X ' , {Mn} variable, has 
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required properties by 1.6. The cardinal of 9C is at most exp No exp No 
= exp No. 

1.9. To prove the first statement of Theorem C it now suffices to 
combine 1.7 with 1.5 and the following simple observation: If XQ Y, 
yÇzd X — Y and F is a discrete subset of f3N—N, then rxy^ryy, i.e. 
TX is a restriction of ry. 

THEOREM C'. Let <t>* = \J{<I>k\k£N, 1M0}, ^ - U j f o r 1 ) * ! * ^ * 
k^O}, where pk = po < • -op (k-tim.es). Then <£** = ((ffj)"1, and 
card 0oo [(0] =exp exp No, card ^» 1 [ (0] â e x p No for any t in T. 

2. Applications. A space is called homogeneous if any point can be 
mapped onto any point by an autohomeomorphism. W. Rudin proved 
in [5] that the space iV* is not homogeneous by proving the existence 
of the so called P-points. His proof of the existence of P-points 
heavily depends on the continuum hypothesis. Theorem C enables us 
to prove the nonhomogeneity of N* without the continuum hypoth­
esis. 

2.1. Proof of nonhomogeneity of N*. For each x in N* denoted by 
Tx the set of all relative types of x; i.e. TX=^<JT1[TX\. If lx=y for 
some autohomeomorphism I of N*, then clearly Tx~Tyt Since the 
sets Tx are of the cardinals a t most exp No, card P = e x p exp No and 
{Tx\xGN*} is a covering of T% the result follows. 

REMARK. I t should be remarked that we have proved the existence 
of exp exp No equivalence classes. Those equivalence classes define 
"free types" of free ultrafilters. Relative free types are defined sim­
ilarly. 

I t remains to prove Theorems A ; and B'. 

2.2. LEMMA. There exists a disjoint transfinite family { Ta\ OL <O>I } of 
subsets of T and a family {ta\ a<o>i}, £«£!", such that, denoting by Xa 

the set of all points of $N of types in Ta, each countable discrete subset X 
of \J{Xe\P<a} has a cluster point in Xa of type ta with respect to X. 

THEOREM D. For any set A of countable ordinals let PA 

= N\J\J{Xa\aeA} be a subspace of pN. If {Ab\bGB} is a countable 
family of sets of countable ordinals, then the product P = U { PAI, \ b £ 5 } 
is countably compact if 0 {-4/3} is unbounded, and it is not countably 
compact if that intersection is empty. 

First we prove Theorem D, then Theorems A', B' , and finally the 
main step, the Lemma. 

2.3. PROOF OF THEOREM D. If the intersection is empty then the 
"diagonal" is a closed infinite discrete subspace of the product. For 

k-tim.es
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the converse, assume that the intersection is an unbounded set Ay 

and let {z(n)} be a sequence in P. Denoting by 7r& the projection from 
P onto PA6 we can choose a subsequence {y{n)} such that each se­
quence {Tby(n)} is either eventually constant or eventually one-to-
one. Choose an a(EA so that each 7Tby(n) belongs to U{X^|]8<a}. 
Choose any point y £/3iV of type ta and consider the point z = {s&} of 
P defined as follows: if {7r&;y(fe)} is eventually constant, then g* is 
this constant; otherwise g* is the image of y under the mapping 
in—>irby(n)} : N—+N. It can be proved that 0 is a cluster point of 
\y(n)}, see [3; the proof of E], and so of {z(n)}. 

2.4. PROOF OF THEOREM A'. For O^k^n let Ak be the class of 
countable ordinals which are not congruent to k modulo n+l. Of 
course H {̂ 4fc| fe ̂g w} = 0 and the intersection of any proper subfamily 
of {-4fc|fe^w} is unbounded. 

2.5. PROOF OF THEOREM B' is similar. For each kEN let Ah be the 
set of all ordinals which are not congruent to k modulo co0. 

It remains to prove Theorem D. The following simple consequence 
of Theorem C' will be needed. 

2.6. If T'QT is of cardinal at most expfc$0 and if TiQT is of 
cardinal expexpb$0, then T'C\<j>™[(t)\'=0 for expexpNo of 2£7i. 
Indeed, by Theorem C' each set &Z1 [(t) ] is of cardinal at most exp Ko. 

2.7. PROOF OF LEMMA. We shall prove the existence of {Ta) and 
{/«} with the following additional properties: 

(a) card r«^exp Ko; 
(b) Tat OL>0, consists precisely of the types of points of |32V whose 

types with respect to some discrete subset of U {X/j|]3<a} is ta. 
(c)4[(O]n(U{7>i/3<a}) = 0 . _ 

Starting with any t — to, r 0 = (to) the induction goes by 2.6. 

REFERENCES 

1. E. Cech, Topological spaces, Publ. H. of CSAV, Praha, 1965. 
2. Z. Frolik, The topological product of countably compact spaces, Czech. Math. J. 

10 (1960), 329-338. 
3. , On two problems of W. W. Comfort, (to appear). 
4. J. Novak, On the topological product of two countably compact spaces, Fund. 

Math. 40 (1953), 106-112. 
5. W. Ru4in, Homogeneity problems in the theory of Cech compactiflcations, Duke 

Math. J. 23 (1956), 409-419, 633. 
6. H. Terasaka, On the cartesian product of compact spaces, Osaka Math. J. 

4(1952), 11-15. 

CASE INSTITUTE OF TECHNOLOGY 


