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The finite form of Ramsey's Theorem [2], states that there exists 
a function h(n) so that if a graph G has a t least h(n) points, then 
either G contains a complete subgraph on n points, or a set of n 
independent points (a set of points with no edges between any pair). 
We note that the graphs to be considered have no loops and each 
pair of points are joined by at most one edge. 

Define ƒ(&, n) to be the least integer so that every graph with 
ƒ(&, n) points contains a complete subgraph on k points or contains 
a set of n independent points. Erdös and Szekeres [ l ] , proved that 

/k + n - 2\ 

M « ) s ( , _ t ) . 
This upper bound can be improved as we show that 

(i) /(*, n> s { n Ci) -^zr^i+0{nh~l) 

where 0 < C , < 1 for i = 3, 4, 5, • • • , and in particular 

/111 + (33y\n2 

(2) / ( 3 , „ ) S ( m ) T + «(.*). 

DEFINITION 1. A graph G will be called a Ramsey (fe, n) graph if it 
has no complete subgraph on k points and no set of n independent 
points. 

Note that a Ramsey (&, n) graph is not required to have the maxi­
mum number, /(fe, n) — 1, of points. 

DEFINITION 2. The complement of a point of a graph G is the sub­
graph of G obtained by deleting from G the given point, all points 
joined to this point by an edge and all edges incident to these points. 

REMARK 1. The complement of a point in a Ramsey (fe, n) graph 
must be a Ramsey (&, w —1) graph. This is obvious since the point is 
independent of all points in its complement. 

REMARK 2. The set of points joined to a given point in a Ramsey 
(fe, n) graph together with their edges must be a Ramsey (k — 1, n) 
graph. 

PROOF OF (1). Let Gn be a Ramsey (k, n) graph on N points. Since 
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by Remark 2 each point has valence less than f(k — 1, n) we see that 
the number of edges of Gn is bounded above by 

{f(k-l,n)-l}N 
W 2 

We now wish to get a lower bound on the number of edges of Gn 

and we proceed as follows: 
Let P» be a point of Gn which has minimum valence in Gn. Denote the 

complement of Pn by Gn-i- By Remark 1, Gn~i is a Ramsey (k,n — 1) 
graph. We now proceed inductively choosing Pi a point of d which 
has minimum valence in d and letting Gi-\ denote the complement 
of Pi taken with respect to the graph d. Also note that since d is a 
Ramsey (fe, i) graph, d~\ will be a Ramsey (fe, i — 1) graph. This 
sequence of points \P%\ is obviously an independent set of points of 
Gn hence there are at most n — \ points chosen by this process. In 
our notation we will proceed as though this sequence contained n — 1 
elements. 

Let Vi denote the valence of Pi and note that since d was a Ramsey 
(k, i) graph, by Remark 2, 0^Vi^f(k — 1, i) — 1. The number of edges 
of Gn removed at the i th step of this process can now be estimated. 
By Remark 2 we see that the points joined to P» have at most 
f(k — 2, i)f(k — l, i)/2 edges between them so that since each point 
has valence v* or more we have removed at least 

n -f(k - 2, i)f(k - 1, i)/2 edges of Gn. 

This gives a lower bound on the number of edges of Gn to be 

^ r » f(k - 2, i)f(k -1, i)) 
(4) ^ 

n C « 

»=2 I 

On the other hand we note that the ith step of the process removed 
exactly z>»+l points of Gn and (3) can be rewritten as 

f(k - 1, ») » 

Combining this with (4) gives us 

(5) 2 - -J»« f ^ ; 2^ (vt + l). 

Since we are interested only in the order of magnitude of these terms 
we will let 
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£ 2 

(6) Vi — Ci — ei 

where / ( f e~ l , î) ^Cik~2+o(ik-2). Note that the bound of Erdös and 
Szekeres guarantees the existence of such a number C. We will show 
that 

Z e< = 0(nk~*) 
i=2 

hence this will show the existence of the constant Cfc<l. 
With this change of notation in (S) and by combining all terms of 

lower order we assert 

n Cflk~~2 n 

(7) Z (Cik~2 - e%)2 S Z (Cik~2 - a) + o(n™-*). 
t'^2 2 t-=2 

Hence if ^et — oin1^1) w e would have 

n Cflk~2 n 

23 (Ci*-2)2 g E (Ct*-*) + o(w2*-') 

or 

2& - 3 " 2k - 2 
+ o(n2k~*), 

which is clearly impossible. Hence by (6), N= ^Cik~~2 — Ze** 
Therefore N^C(Ck)n

k~l/k--\-\-o(nk-1) and (1) follows. 
REMARK 3. From (7) and for & = 3, where we know C = 1, we have 

t=2 2 t'^2 

which easily shows that 

111 + (33)1'2 

C3 g 
128 

REMARK 4. Estimation of the constant C*, fe = 3, 4, 5, • • • shows 
that 

fJ*"^ 
1 V~2 (* + 2 ) ( * - 1) 
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A direct search on the CDC 6600 yielded 

275 + 845 + HO5 + 1336 - 1445 

as the smallest instance in which four fifth powers sum to a fifth 
power. This is a counterexample to a conjecture by Euler [l] that at 
least n nth powers are required to sum to an nth power, n>2. 
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