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Introduction. Ten years ago the development of a maximum prin-
ciple as a necessary condition for optimality of some control problems
began a new era for optimization theory. Since that time different
maximum principles have been proposed and proved for a great vari-
ety of optimization problems. All these maximum principles and their
proofs have a similar structure. The aim of the present paper is to
give this unique structure independently of the particular character-
istics of any one of these problems.

The present paper is a further addition to the trend started in
Gambkrelidze [1] and [2], Halkin [3] and [4], Neustadt [5].

1. Optimization problem. We are given a set L, a mapping
=" fo © + +, fr) from L into E* and an integer m with 1=m<k.
The problem is to find an £ L which maximizes fi(£) subject to the
constraints f;(£) =0if1=2,3, - - -, mand fi(£) =0ifs=m+1, - - -, k.

2. Some assumptions. The set L is a subset of a linear space X.
There is a set M CX which is an approximation of L around # and
a mapping k= (hy, - - -, hy): X—E* which is an approximation of f
around 2. We shall require that

(i) the set M is convex and 2& M.

(ii) the functionals k; are convex for t=1, - - -, m and linear-plus-
a-constant for t=m+1, - - -, k.

(iii) for any set S=co{02, X1, ¢ 0, xz} CM there is a mapping
¢: M—L such that the mappings fo ¢ and % are continuous over S
(with respect to the usual finite dimensional topology on S) and “tan-
gent at £ over S” which means that for any >0 there is an 7&(0, 1]
with the property that I fEx) — h(x)| < e if 8 € (0,9] and

xEco{z, 2+0(x1—2), - - -, #+8(x1—%)}.
3. Maximum principle. The purpose of the present paper is to
prove that there exists real numbers Ay, Ng,  + +, A\ such that
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(O‘) Z l)\il >0,

=1

®) M=0 fori=1,2,---,m,

k k
() X Nki(®) = D Nehi(x) forallx € M.
=1

t=1

4. Proof of the maximum principle. There is no loss of generality
by assuming that £=0 and that f(0)=0. Let K= {(ozl, ce e, ap):
@;>0, i=1, - - -, m; ;=0, i=m+1, - - -, k}. We have KNf(L)
= . We want to prove that K and k(M) are separated. We shall
assume that K and k(M) are not separated and show that this leads
to KNf(L)= . If the sets k(M) and K are not separated then,
Step I, there exists a set S=co{0, X1, ¢ * e, xz} C M such that

(1) R(S) and K are not separated,
(i) I=k—m+1,
(iii) Aj(x;)>0for j=1, - -, mandi=1, - .., L

Let S° = S~ {0}. Then, Step II, there exists a ¢ > 0 such that
R(S) Clplon, « -+, o)1 pE0, 1], 0S;21/0, i=1, - - -, m; —1/c
fo;21/e, i=m+1, - - -, k}. For every 8&(0, 1] let Sg={8x:
xES~{0}}. Then, Step III, there exists a SE(0, 1] such that
fi€®x)>0if i=1, - - -, m and xES; where { is the mapping from
Sinto L given by the definition of M. Then, Step IV, f(¢(S))NK = &
which implies f(L)NK = &. This concludes the proof of the Maxi-
mum Principle. Steps I, II and III correspond to elementary prop-
erties of convex sets and convex functions in a finite dimensional
Euclidean space. Step IV is a consequence of Brouwer fixed point
theorem.
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