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Let fÇzLp(E
n), lSp<co, En being the w-dimensional Euclidean 

space, and let us consider an approximation process defined by means 
of a singular integral of Fourier convolution type 

(1) K(f; *;$•)= — — f ƒ(* - u)k(u; f) du. 
(2w)nl2 J En 

Here u, x denote vectors of En and f a positive parameter, whereas 
k(u\ f) is said to be the kernel of the integral (1) subject to the fol­
lowing conditions [l, p. l ] : 

(i) ||*(- ;f)||i S M, f *(*;f) du = (2TT)^2 for all f > 0; 

(ii) lim I | *(«; f) | du = 0 for all Ô > 0. 

It is well known [l, p. 10] that under these conditions the singular 
integral (1) exists a.e., again belongs to Lp(E

n) and satisfies the rela-
tions \\K(f; • ; f) | | ,S| |*(- ; f)||i||/(0|U and 

(2) Km||jr(/;sf)-/(-)IU-0. 

Starting with relation (2) one wishes to establish some connections 
between the rapidity of the convergence in (2) and further properties 
of the function/. Here we only aim to discuss a special but neverthe­
less important case of this general approximation problem, namely 
the case of the best possible rate of approximation of nontrivial 
functions ƒ by the singular integral (1), and to determine the exact 
class F ol functions ƒ for which this optimal rate is precisely attained. 
This notion, the so-called saturation of the process (1), was first in­
troduced by J. Favard [ô] and is, for our situation, given by 

DEFINITION. Let the singular integral (1) be given with kernel 
k(x\Ç) and f(ELp(E

n), l^p<<x>. If there exists a monotone decreasing 
1 The results of this paper were announced by R. J. Nessel in talks held on Septem­

ber 15, 1964 at the Austrian Mathematical Congress, Graz, and on March 6, 1964 
and August 5, 1965 at the Mathematical Research Institute, Oberwolfach, Black 
Forest. 
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function <£(f) with lim^eo </>(£) = 0 and a class FC.Lp(E
n) such that 

(a) \\K(f; • ;f) - / ( - ) | | * = *(*Û0) W f -> oo implies f {x) = 0 *.«.; 
(b) j | ^ a ; s r t - / ( - ) | | p B S 0 ( * ( r ) ) w f - * o o if and only iff E F, 

then we call <j> the order and F the saturation or Favard class of the process 
(1). Thereby we assume that F contains at least one function different 
from the null-f unction. 

In discussing the saturation of the singular integral (1) further 
conditions must be known for the kernel. In following the well-
developed one-dimensional theory [3], [8] it turns out that the in­
tegral transform method, first introduced by one of the authors in 
e.g. [3], [4], is also an appropriate tool in the w-dimensional situa­
tion. This method works in a very similar fashion to that, with which 
certain initial or boundary value problems of differential equations 
may be solved by using e.g. the Laplace transform. If for l^p^2 
one applies the w-dimensional Fourier transform to (1) one obtains, 
by the convolution theorem, a separation of the kernel and the par­
ticular function ƒ. So it seems to be reasonable to postulate further 
conditions upon the Fourier transform of the kernel. For this purpose, 
let ty(v) be a function, defined and continuous in En with isolated 
zeros such that for all v 

(3) Urn — 4,(v)9 
r-00 4>(f) 

where <t> is defined as in the above definition and [2] 

(4) **(*) = f *-<<•.•>*(*) dx 
W W (2TT)»/2 J En W 

denotes the Fourier transform of hÇELi(En), (v, #)=PiXi+ • • • 
+vnxn being the inner product of the vectors u; # £ E n . Furthermore, 
suppose there exists a family {*>$•} of uniformly bounded measures 
such that the representation 

(5) — — — = iKiO^W 

holds for every v(EEn and ? >0, where /*v, analogously to (4), desig­
nates the Fourier-Stieltjes transform of the bounded measure p. De­
fining the Fourier transform of / £ L p ( £ n ) , 1 <p^>2, in the usual way 
([2], [9]) we may state the first result of this note: 
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THEOREM 1. LetfELp(E
n), l£p£2} and the kernel k(x; f) of (1) 

satisfy (3). 
(a) If there exists a function gÇzLp(E

n) such that 

{*(ƒ;•;*) -ƒ(•)} - * ( • ) ! lim 
* ( « 

= 0, 

tóe» $(v)f*(v) = g~(fl) (a.e. i# case 1 < p ^ 2). 7« particular, 
H-KCf; • : f) - / ( • ) | | J . = o(0(r)) as f -x» implies f{x) = 0 a.e. 

(b) /ƒ 

(6) || #(ƒ; •;*•) - / ( - ) I I P = 0(*(«) <f-* • ) , 
tóew /ör £ = 1 tóere existe a bounded measure /x awd /or l< />^2 a 
function gÇzLp(E

n) such that 

(7) W)f*(p) = MvW /ÖT <*" v E E»; * « ƒ » = g*(p)a.e. 

(c) 7/JAe kernel k(x\ f) iw addition satisfies (5) (iw case 1 < £ ^ 2 we 
suppose that the v$ are absolutely continuous} then the representation (7) 
implies the approximation (6). 

THEOREM 2. LetfELp(E
n), l£p£2, and the kernel k(x; f) <?ƒ (1) 

satisfy (3). I%ew taw equivalent characterizations of the Favard classes 
corresponding to a saturation order $(f) awd precisely expressed by (7), 
are given by: 

(0 ^•••/JisO-*)}-"^1^* <2») 
= 0(1) (*-•«<>). 

(ii) The f unctions {(l/#(?)) [K(f; x\ J) —f(x) ]} converge weakly* as 
£—>oo, i.e. in case p — \, there exists a bounded measure ju such that 

lim f (1MÖ)W;«;Ö -ƒ(«)]*(«)*«- f *(«)<fc 

for all continuous h vanishing at infinity. 

Note that condition (i) is Cramer's criterion for the representation 
of a function as a Fourier-(Stieltjes) integral [5]. Condition (ii) is a 
new result also for the one-dimensional case. All proofs and further 
details will be published elsewhere. 

As an application we will consider the singular integral of Gaufi-
WeierstraC for fELp(E

n), 1 â £ ̂  2, 

(8) W(f;x;t) = (4rf)-»'* f f(x - u) exp{ -u*/4i} du (x EEn;t> 0) 
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and its approximation to the initial value ƒ as £-*0+. Setting 
r = (2^ 2 ) " 1 and w(u)=2n'2 e x p { - # 2 } , (8) is of the form (1) with 
Hu'> f)=fn^G"^)- Regarding the condition (3), we immediately see 
that it is fulfilled with 0(f) = (2f)-2ss* and \p(y) = -v2. Instead of 
evaluating (5) we will here prove the direct part of the saturation 
theorem along the following simple lines. If the representation (7) 
holds with \l/(v) = — v2 then we have, e.g., £ = 1: 

[ n / ; - ; 0 - ƒ ( • ) ] > ) 

= ƒ V(<*M; • ;r)]A(?)dr - [ ƒ V(<fo; • ;T) < Z T ] » . 

Here the interchange of the order of integration is permissible by 
Fubini's theorem. Thus by the uniqueness theorem for Fourier trans­
forms we obtain for every fixed t and almost all x 

(9) W(f; x) t) - ƒ(*) « f W(<ZM; *J T) <*r> 
^ o 

from which the approximation || W(f ; • ; /) —ƒ(• )||i = 0(t) immediately 
follows. We observe that the uniqueness theorem here takes the place 
of an inversion theorem, a fact which may be used to simplify the 
proofs of the one-dimensional case, too. Now the representation (9) 
may be regarded as a starting point in finding equivalent characteri­
zations of the Favard class of (8) other than those given by Theorems 
1 and 2. Summarizing we have 

THEOREM 3. Suppose f E.Lp(E
n), l^pS2. 

(a) The approximation \\W(J; • ; t) — f(')\\P = o(t) as /—»0+ implies 
f(x) = 0 a.e. 

(b) The following relations are equivalent : 

(i) Il W ; -;0-/(-)||,=O(0 (<->0+); 
(ii) for p = l there exists a bounded measure /x and for l<p<>2 a 

function g^Lp(E
n) such that 

-v2f*(v) *= p"(v)for all v G En; ~v2f*(v) = g*(v) a.e,; 

(iii) the functions {^[WfJ; x\ t)—f(x)]} converge weakly* as 
t~>0+; 

(iv) for KpS2 the functions {tr^Wif; x\ t)—f(x)]} converge 
strongly as t—>0 + ; for p = l the strong convergence of these functions 
only characterizes the subclass of the Favard class for which the measure fj, 
in (ii) is absolutely continuous; 

(v) \\S(f; • ; f ) - / ( - ) | | p = 0(r») {r-+0+), where 
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r(»/2) e 
(10) S (f; x; r) = - l i _ i f(% + ru) du 

denote the spherical means of f. 

Thus we see that for \<p S 2 the weak* and strong convergence of 
the functions {^"1[TV(/; x\ t)—f(x)]} are equivalent which indeed is 
a new contribution for the one-dimensional theory, too. Among the 
other examples which may be treated in an analogous way, we will 
here only mention that of Cauchy-Poisson. So far our explicit proofs 
of the direct part of the saturation theorems in fact avoid the condi­
tion (5) which is somewhat troublesome to verify in the applications, 
but they depend on the special structure of the singular integrals 
under consideration. In order to proceed to a more general situation 
we study the spherical means (10) of a function ƒ£Lp( .En) . Though 
they are not singular integrals of the form (1) we may nevertheless 
apply the same methods to prove that the saturation order of the 
approximation of ƒ by (10) for l^p^2 is given by 0(r2) as r—>0 + 
and that the corresponding Favard class is characterized by the func­
tion \J/(v) = —v2/2n. Furthermore, for 1 <p^2, an equivalent charac­
terization for this class is the strong convergence of the functions 
{r~2[5(/; x; r)—f(x)]} as r—»0 + . Using these results on spherical 
means one may obtain the following theorem concerning kernels of 
type k(x; f) =Çnk(Çx) (which need not necessarily satisfy (5)). 

THEOREM 4. Let the kernel Çnk(Çx) of (1) be radial, i.e. there exists a 
function ic(r), defined on0^r<coy such that k(x) = K ( | X\ ) a.e. Suppose 
that the (n + l)th absolute moment of K exists. Then for every function 
fCzLp(E

n), l^pS2, which may be represented in the form (with con­
stant c) 

— cv2f*(v) — ix* (v) with /x a bounded measure (p = 1); 

-a>2jT00 = g*(v) a.e. with g £ Lp(E
n) (1 < p ^ 2), 

we have the approximation 

!!#(ƒ;-;f)-/(Oil* = o(r2) (r-+«>). 
Furthermore f for l<p^2 we have the formula 

lim 

where 

f2[#(/;sf) 

Wn+lM = 

ƒ(•)] - — *»»+iM«(-) 
2nc 

= 0, 

1 r* 

/ n \ JQ 
2<«r-a)/2r(_) 

K(r)rn+1 dr 

\i 
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R» f ƒ(* - u){RI uI }-<»'*+«>Jnli+a(R\u\)du, 

is a constant. 

The last theorem may be announced in a more general version, 
nevertheless we are now in a position to treat the saturation problem 
of the singular integral of Bochner-Riesz 

B«(J; x; R) 

(11a) _ 2«T(a + 1) 

(2TT)M>2 

which we may rewrite in the form 

( l ib) £*(ƒ; x; R) = f ( 1 - —J «<<»••>ƒ* («) dv. 

Here J\(t) denotes the Bessel function of order X. The form ( l ib ) 
indicates the important role which the integral (11a) plays in the 
summation of multiple Fourier series [7]. An elementary calculation 
shows that the condition (3) is fulfilled with <j>(R)~R~2 and yf/(v) 
= —av2 and tha t we may apply Theorem 4 in case a>(n+3)/2 to 
obtain the same theorem for (11a) as Theorem 3 for (8). Further re­
sults and applications as well as the detailed proofs of the cited 
theorems will appear elsewhere. 
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