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B. Griinbaum [2] has made a thorough report of the known results
on measures of central symmetry for convex sets. We seek here to
measure the degree of axial symmetry (axiality) of an oval K (a
compact convex set in E? with interior points).

DEFINITION. A measure of axiality is a real-valued function f de-
fined on the class of ovals such that

(i) 0sf(K)=1;

(ii) f(K)=1if and only if K has an axis of symmetry (is axial);

(iii) f is similarity-invariant.

Let ¢ be a direction in the plane, k(¢) a line normal to the direction
@, bs(K) the breadth of K in the direction ¢, Cv(S) the convex hull
of the set S, A\y(K) the “load curve” of K in the direction ¢, (i.e.,
the set of midpoints of all chords of K in the direction ¢), [K] the
area of K, IK | the perimeter of K, and Ky the Steiner symmetrand
of K with respect to the line k(¢).

The following measures of axiality are studied, and lower bounds
are determined for them on the classes of arbitrary ovals (K), cen-
trally symmetric ovals (K.), and ovals of constant breadth (K):

FE) = max {1 — b,[CvO(K)]/b4(K) },

b
74K) = max mgx (1/8) [ 166, k),

where b=by4,,2(K), k=Ek(¢), and (¢, k, ¥) is the ratio (taken =<1)
of the lengths of the two parts into which a chord y=+v(y) of K in
the direction ¢ is divided by k (r=0 if yN\k= ),

fi(K) = max {[K']/[K]: K’ is axial, and K’ C K},

fi(K) = { 1/[K"]: K" is axial, and K € K"},
fo(K) = {|K'|/|K| K'is axial, and K’ C K},
fo(K) = { | K|/| K"| : K" is axial, and K C K"},

1 This work was supported by the Air Force Office of Scientific Research Grant
AF-AFOSR 661-64 and forms part of the author’s dissertation written at the Uni-
versity of Minnesota under Professor H. W. Guggenheimer.
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[1(K) = max max {[Kvor O K/[K]},
fa(K) = max max [K]/[Cv(Kiwy Y K]},
Jo(K) = max max | Kew NK| /| K|},

fro(K) = m:Lx max | K| /]| Cv(Keey VK)| },

—— e e e

| Key| /| K|}

f1(K) = max max
s

Lower bounds for these measures have been established as follows:

K K, K,
iz 122 V2/2 (2v3 — 312
fo = 1/4  2log2-—1 0.5474
fs 2 5/8 2(v2—1)52 8(2 — /3)/3
fo =2 12 V'2/2 3(r — V/3)/4@ — V3)
fi = 0.649 0.8045 24/2/w
fo = 0.768 0.8045 37/8(3 — v/3).

Lower bounds for the remaining measures are obtained from the facts
that fi(K) 2f:-4«(K),1=1, 8, 9, 10, and fu(K) = fs(K) for every oval K.
The only other special result not included in the above table is
fu(Ky) 2 (2—-2+/3/m)12

Proofs of these results will be published elsewhere.
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COLLEGE OF SANTA FE

? Best possible lower bound.

3 Conjecture; this is the g.1.b. on the class of parallelograms.
4 Priority for this result must be given to F. Krakowski [3].
§ Result of W. Nohl [4].



