EXTREMAL LENGTH AND REMOVABLE BOUNDARIES OF RIEMANN SURFACES

BY BURTON RODIN¹

Communicated by Maurice Heins, September 30, 1965

1. **Introduction.** Given a Riemann surface R let KD denote the space of harmonic functions u on R with finite Dirichlet norm ||du|| and such that *du is semiexact, i.e., $\int_c *du = 0$ for all dividing cycles c. Then O_{KD} denotes the class of Riemann surfaces R for which every function in KD is constant. Clearly $O_{HD} \subset O_{KD} \subset O_{AD}$ and for planar surfaces $O_{KD} = O_{AD}$. Under various names, this class O_{KD} has been studied by many authors (see, for example, Royden [4], Sario [5]).

The concept of the extremal length $\lambda(\mathfrak{F})$ of a family \mathfrak{F} of curves on a Riemann surface R can be extended to the case that \mathfrak{F} is a family of curves on the Kerékjártó-Stoilöw compactification \hat{R} of R merely by eliminating the ideal points from each curve. Let α_0 , α_1 be compact subsets of R. Define $\hat{\mathfrak{F}}$ to be the family of all arcs on \hat{R} with initial point in α_0 and endpoint in α_1 . Define \mathfrak{F} to be the subfamily of $\hat{\mathfrak{F}}$ consisting of all arcs in R. We consider two notions for the extremal distance between α_0 and α_1 , viz., define

$$\lambda(\alpha_0, \alpha_1) = \lambda(\mathfrak{F}), \qquad \hat{\lambda}(\alpha_0, \alpha_1) = \lambda(\hat{\mathfrak{F}}).$$

The aim of this note is to announce the following

THEOREM. A necessary and sufficient condition that $\lambda(\alpha_0, \alpha_1) = \hat{\lambda}(\alpha_0, \alpha_1)$ for all compact subsets α_0 , α_1 of R is that $R \in O_{KD}$.

Our Theorem is reminiscent of the already classical result of Ahlfors-Beurling [1]:

A plane point set E is an AD-null set if and only if the removal of E does not change extremal distances.

The relationship between these results will be discussed in §3 below.

2. Sketch of the proof. The complete proof will appear in a forth-coming book [3]. The main steps in proving the necessity of the extremal distance condition are the following. (i) To construct functions u, u on R such that $\lambda(\alpha_0, \alpha_1) = ||du||^{-2}$ and $\lambda(\alpha_0, \alpha_1) = ||du||^{-2}$, (ii) to show that $R \in O_{KD}$ implies u = u. (Actually, these steps are applied to each component of $R - \alpha_0 - \alpha_1$, rather than R itself.)

¹ This work was supported in part by the National Science Foundation under grant GP 4106 at the University of California, San Diego.

Step (i) was accomplished in [2]. There it is shown that if α_0 , α_1 , γ_0 , γ_1 is an (admissible) partition of the ideal boundary of a Riemann surface S then a harmonic function $u(\alpha_0, \alpha_1, \gamma_0, \gamma_1)$ on S can be constructed which is determined by the following conditions—they are to be interpreted in the sense of a limit via an exhaustion of S: (1) $u(\alpha_0, \alpha_1, \gamma_0, \gamma_1) \equiv 0$ on α_0 , (2) $u(\alpha_0, \alpha_1, \gamma_0, \gamma_1) \equiv 1$ on α_1 , (3) $u(\alpha_0, \alpha_1, \gamma_0, \gamma_1)$ has vanishing normal derivative along γ_0 (L_0 -behavior near γ_0), (4) along each component of γ_1 , $u(\alpha_0, \alpha_1, \gamma_0, \gamma_1)$ is constant and has vanishing flux (L_1 -behavior near γ_1). Furthermore, it is shown that $||du(\alpha_0, \alpha_1, \gamma_0, \gamma_1)||^{-2} = \lambda(\mathfrak{F}(\alpha_0, \alpha_1, \gamma_0, \gamma_1))$ where $\mathfrak{F}(\alpha_0, \alpha_1, \gamma_0, \gamma_1)$ is the family of arcs on $S \cup \alpha_0 \cup \alpha_1 \cup \gamma_1$ with initial point in α_0 and endpoint in α_1 . Step (i) now follows since we have $u = u(\alpha_0, \alpha_1, \beta, \phi)$ and $a = u(\alpha_0, \alpha_1, \phi, \beta)$ where β is the ideal boundary of R.

Step (ii) is accomplished by showing that on any $S \in O_{KD}$, L_0 - and L_1 -behavior cannot be distinguished.

To prove that the extremal distance condition of the Theorem is sufficient for $R \in O_{KD}$ we consider a consequence of the assumption $u = \mathfrak{A}$ when α_0 , α_1 vary over two systems of concentric disks centered at points ζ_0 , ζ_1 of R. For i = 1, 2 let p_i denote a harmonic function on R with simple logarithmic poles at ζ_0 and ζ_1 of opposite sign, and with L_i -behavior near the ideal boundary β of R. As a limiting case of $u = \mathfrak{A}$ we derive $p_0 = p_1 + \text{constant}$. In general, the differential $\psi = dp_1 - dp_0$ has the reproducing property

$$\int\!\!\int_R dh \wedge *\psi = 2\pi \int_{\zeta_0}^{\zeta_1} dh$$

for all $h \in KD$. Since $\psi = 0$ in our case, $R \in O_{KD}$.

3. **Remarks.** Let R be a region in the extended plane P and let E = P - R. Then $\lambda(\alpha_0, \alpha_1)$ is the usual extremal distance between α_0 , α_1 on P - E. Let $\lambda_P(\alpha_0, \alpha_1)$ denote the extremal distance between α_0 , α_1 on P. Then we have

$$\lambda(\alpha_0, \alpha_1) \geq \lambda_{\mathcal{P}}(\alpha_0, \alpha_1) \geq \hat{\lambda}(\alpha_0, \alpha_1).$$

Thus our Theorem immediately implies the "only if" part of the Ahlfors-Beurling Theorem.

To derive the converse, assume that the removal of E does not change extremal distances. As in §2 we see that this implies that E is a removable singularity for the function p_0 defined on R. In general, the partial derivative of p_0 with respect to Re ζ_1 yields the real part of the horizontal slit mapping function for R with pole at ζ_1 . It

follows that E is a removable singularity for any parallel slit mapping. Thus the span of R vanishes; hence $R \in O_{AD}$.

REFERENCES

- 1. L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null sets, Acta Math. 83 (1950), 101-129.
- 2. A. Marden and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings. Acta Math. 115 (1966).
- 3. B. Rodin and L. Sario, *Principal functions*, Van Nostrand, Princeton, N. J. (to appear).
- 4. H. L. Royden, On a class of null-bounded Riemann surfaces, Comment. Math. Helv. 34 (1960), 52-66.
- 5. L. Sario, An extremal method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc. 73 (1952), 459-470.

University of California, San Diego