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1. Introduction. Given a Riemann surface R let KD denote the 
space of harmonic functions u on R with finite Dirichlet norm \\du\\ 
and such that *du is semiexact, i.e., fc * du = 0 for all dividing cycles c. 
Then OKD denotes the class of Riemann surfaces R for which every 
function in KD is constant. Clearly OHDC.OKDC.OAD and for planar 
surfaces OKD = OAD. Under various names, this class 0KD has been 
studied by many authors (see, for example, Royden [4], Sario [5]). 

The concept of the extremal length X(5:) of a family $ of curves on 
a Riemann surface R can be extended to the case that $ is a family 
of curves on the Kerékj artó-Stoilöw compactification R of R merely 
by eliminating the ideal points from each curve. Let a0, ot\ be com­
pact subsets of R. Define § to be the family of all arcs on R with 
initial point in a0 and endpoint in a\. Define $ to be the subfamily of 
§ consisting of all arcs in R. We consider two notions for the extremal 
distance between a0 and «i, viz., define 

X(ao, ai) = X(30, H<*o, ax) = X(#). 

The aim of this note is to announce the following 

THEOREM. A necessary and sufficient condition that\(a0, ai) =X(OJ0, <*i) 
for all compact subsets a0, «i of R is that RCOKD-

Our Theorem is reminiscent of the already classical result of Ahl-
fors-Beurling [ l ] : 

A plane point set E is an AD-null set if and only if the removal of E 
does not change extremal distances. 

The relationship between these results will be discussed in §3 
below. 

2. Sketch of the proof. The complete proof will appear in a forth­
coming book [3]. The main steps in proving the necessity of the ex­
tremal distance condition are the following, (i) To construct func­
tions u, û on R such that X(a0, ai) =||dw||"~2 and %(a0, a{) =||<M||~2, 
(ii) to show that RCOKD implies u = û. (Actually, these steps are 
applied to each component of R—a0—au rather than R itself.) 

1 This work was supported in part by the National Science Foundation under 
grant GP 4106 at the University of California, San Diego. 
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Step (i) was accomplished in [2]. There it is shown that if a0, «i, 
70, 71 is an (admissible) partition of the ideal boundary of a Riemann 
surface S then a harmonic function u(a0, «i, 70, 71) on 5 can be con­
structed which is determined by the following conditions—they are 
to be interpreted in the sense of a limit via an exhaustion of S: 
(1) u(a0, au 70, 71) = 0 on a0, (2) u(a0, ai, 70, 7i) = 1 on «i, (3) 
u(cto, au 7o, 7i) has vanishing normal derivative along 70 (Lo-behavior 
near 70), (4) along each component of 71, u(a0l ai , 70, 7i) is constant 
and has vanishing flux (Li-behavior near 71). Furthermore, it is 
shown that ||dw(a0, otu To, 7i)||~2 = X(^(«o, «1, 7o, 7i)) where 
^(ao, au 7o, 7i) is the family of arcs on S\Jao\Ja\\Jy\ with initial 
point in a0 and endpoint in a\. Step (i) now follows since we have 
u = u(a0y au j8, <t>) and û — u{a§, au (j>, fi) where j8 is the ideal boundary 
of R. 

Step (ii) is accomplished by showing that on any SÇZOKD, L0- and 
Li-behavior cannot be distinguished. 

To prove that the extremal distance condition of the Theorem is 
sufficient for RÇLOKD we consider a consequence of the assumption 
u = û when a0y a± vary over two systems of concentric disks centered 
at points ft, ft of R. For i — 1, 2 let pi denote a harmonic function on 
R with simple logarithmic poles at ft and ft of opposite sign, and with 
Li-behavior near the ideal boundary fi of R. As a limiting case of u = Û 
we derive po = pi+constant. In general, the differential \l/ = dpi—dpo 
has the reproducing property 

I I dh A * t = 2TT I dh 
J J R J to 

for all hÇEKD. Since ^ = 0 in our case, RÇÎOKD-

3. Remarks. Let R be a region in the extended plane P and let 
E = P — R. Then X(ce0, «1) is the usual extremal distance between 
«o, a\ on P — E. Let \P(a0l «1) denote the extremal distance between 
aoy a\ on P. Then we have 

Thus our Theorem immediately implies the "only if" part of the Ahl-
fors-Beurling Theorem. 

To derive the converse, assume that the removal of E does not 
change extremal distances. As in §2 we see that this implies that E 
is a removable singularity for the function p0 defined on R. In gen­
eral, the partial derivative of p0 with respect to Re ft yields the real 
part of the horizontal slit mapping function for R with pole at ft. I t 
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follows tha t £ is a removable singularity for any parallel slit map­
ping. Thus the span of R vanishes; hence RÇLOAD-
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