
THE GEOMETRY OF G-STRUCTURES1 

BY S. S. CHERN 

1. Introduction. Differential geometry studies differentiate mani­
folds and geometric objects or structures on them. I t is now custom­
ary to distinguish it from differential topology by the presence of a 
structure in addition to the differentiable structure. What a differen­
tial geometric structure is or should be is a matter of taste. At the 
present state of the field a definition general enough to include all the 
significant structures will certainly contain many uninteresting ones. 
Among the at tempts a t a general definition is the notion of a geo­
metric object initiated by Oswald Veblen [ l30]. 

Not all the geometrical structures are "equal". I t would seem that 
the riemannian and complex structures, with their contacts with 
other fields of mathematics and with their richness in results, should 
occupy a central position in differential geometry. A unifying idea is 
the notion of a G-structure, which is the modern version of a local 
equivalence problem first emphasized and exploited in its various 
special cases by Elie Cartan [36], [41], [129]. Generally we will re­
strict ourselves in this article to the discussion of problems which fall 
under the notion of a G-structure. 

Two general problems are of importance: 
I. Existence or nonexistence of certain structures on a manifold. 
EXAMPLE 1. A positive definite riemannian structure always exists. 
EXAMPLE 2. On a compact manifold M a nowhere zero differenti­

able vector field exists if and only if the Euler-Poincaré characteristic 
of M is zero. 

EXAMPLE 3. One may ask whether a nonzero vector field exists on 
M (supposed to be compact and orientable) which is parallel with 
respect to a riemannian metric. By Hodge's harmonic forms a neces­
sary condition is that the first Betti number bl of M is ^ 1. One can 
further prove that the second Betti number b2^bl — 1 (cf. §5). These 
conditions are probably not sufficient. 

II . Local and global properties of a given structure. 
EXAMPLE 1. For a riemannian structure this means riemannian 

geometry. 
EXAMPLE 2. If we are only interested in the existence or nonexist-
1 Based on the Colloquium Lectures delivered at East Lansing, Michigan, August 
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ence of a nowhere zero vector field, it is not necessary to distinguish 
between contravariant and covariant vector fields, because a rie-
mannian metric will transform one into the other. However, the dis­
tinction is essential when we study their properties. Any two nonzero 
contravariant vector fields are locally equivalent. On the other hand, 
a covariant vector field is the same as a linear differential form co. To 
co one can associate a pair of integers (k, Z), defined to be the largest 
integers such that 

(1) (dœ)k ^0, co A (do))1 9*0 I = k or k - 1. 

These vector fields define differential systems. Of importance is the 
study of the local and global properties of their integral manifolds. 

I t is natural to combine I and II and ask for conditions such that 
a structure exists with given local or global properties. A simple prob­
lem of this nature is : What are the conditions that there exists a co-
variant vector field on a manifold with given values of fe, I ( = fe or 
fe — 1) at every point? I do not know the answer even in the following 
special case: Does there exist on a compact orientable three-dimen­
sional manifold a linear differential form co such that co A^co^O every­
where? The tangent bundle of an orientable three-dimensional mani­
fold is a product bundle, but this fact does not seem to help the prob­
lem. 

Both in the last problem and in the problem of Example 3, I the 
conditions in question are differential conditions (i.e., involving the 
partial derivatives of the tensor fields in question), in contrast to 
Examples 1, 2, I, where the conditions are algebraic in nature. For 
problems of the latter kind various techniques for their treatment 
have been developed in fiber bundles (obstructions, characteristic 
classes, cohomology operations, etc.). For existence and properties of 
structures satisfying differential conditions much less is known in the 
way of general methods, except perhaps the conclusions which can be 
derived by application of harmonic forms. We will consider in this 
paper principally structures satisfying differential conditions. 

When manifolds have certain structures, it is natural to consider 
their mappings which are in a sense admissible. Examples are iso­
metric mappings of riemannian manifolds and holomorphic mappings 
of complex manifolds. Studies of such mappings and of problems men­
tioned above all lead to systems of differential equations or inequal­
ities, generally nonlinear. 

This paper will be devoted to a review of some of the important 
developments in differential geometry in recent years, following the 
above guideline. With a task of this scope omissions are inevitable 
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and results unmentioned are in no way less important. We will em­
phasize simple and concrete problems, at the expense of generality. 

2. Riemannian structure. A riemannian manifold of two dimen­
sions has at every point a scalar invariant, the gaussian curvature. 
In higher dimensions its generalization is the riemannian or sectional 
curvature, which is a function of (p, X), p being a point and X a two-
dimensional plane element through p. Geometrically this is the gaus­
sian curvature at p of the surface through p generated by the geo­
desies through p and tangent to X. The knowledge of the sectional 
curvature for all (p, X) determines the Riemann-Christoffel tensor 
and hence in a sense all the local properties of the riemannian struc­
ture. The class of riemannian manifolds whose sectional curvature 
keeps a constant sign is of obvious geometrical interest. 

A complete riemannian manifold with sectional curvature S 0 has 
a universal covering space homeomorphic to the euclidean space. This 
is due to the fact tha t the geodesies through a point 0 contain no 
point conjugate to 0. By studying the isometries in the universal 
covering space one derives properties of the fundamental group of 
the manifold. An example is the following theorem [112] : A compact 
riemannian manifold with sectional curvature < 0 has a fundamental 
group which cannot be abelian and of which every abelian subgroup 
is cyclic. 

The Euler-Poincaré characteristic of a compact orientable rie­
mannian manifold M of even dimension n = 2m is given by the Gauss-
Bonnet formula [4], [39], 

ij ' 

where dV is the volume element and Rijki are the components of the 
curvature tensor relative to orthonormal frames; e ^ . . . ^ is zero if 
iu ' • * » iim do not form a permutation of 1, • • • , 2m, and is equal 
to 1 or — 1 according as the permutation is even or odd. It does not 
seem to be an easy problem to draw conclusions on the sign of the 
integrand from properties of the sign of sectional curvature. As a 
consequence the following conjecture has not been decided in its full 
generality: If M has sectional curvature ^ 0 , then x(M) ^ 0 ; if I f has 
sectional curvature rgO, then x(M) ^ 0 or fgO, according as n^O or 
2, mod 4. The statement is true for w = 4 [42] and for the case that 
M has constant sectional curvature. 

x(M) = 

(2) 
2ZmTmm\ 

•a 
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Much work has been done recently on complete riemannian mani­
folds with sectional curvature bounded below by a positive constant. 
Such a manifold is always compact. This is proved by examining the 
second variation of arc length and estimating the distance from a 
point to its first conjugate point on a geodesic. For n = 2 the manifold 
is homeomorphic to the sphere. This is not true for higher dimensions. 
In fact, the complex projective space with the usual elliptic hermitian 
metric has sectional curvatures R satisfying the inequalities A/4t^R 
^Ay A being a positive constant. 

Again by considering the second variation of arc length Myers 
proved the following theorem [98]: A complete riemannian manifold 
with Ricci curvature = c ( = constant) > 0 is compact. (The Ricci 
curvature is a function of (p, X) , where X is a vector through p. I t is 
the arithmetic mean of the sectional curvatures at (p, X*), 1 = i ^ n — 1, 
where X» are n — \ mutually perpendicular plane elements through 
X.) I t follows that its universal covering manifold is also compact 
and hence that its fundamental group is finite. From the last result 
one concludes that the first Betti number of the manifold is zero. 

The last conclusion can also be derived by a method of Bochner 
[ l 4 l ] . Bochner's method is an extremely important tool in differen­
tial geometry. I t applies to the high-dimensional Betti numbers of 
riemannian manifolds and, more importantly, to the derivation of 
criteria (in terms of curvature properties) for the vanishing of more 
general cohomology groups (cf. §8). The idea is to study the measure 
of a harmonic form of degree r and the curvature properties at a 
point where the measure attains its maximum. From the absence of 
any point with such curvature properties one concludes that the 
harmonic form must be zero and hence that the rth Betti number is 
zero. For r — \ one gets the above corollary to Myers' theorem. For 
r > 1 the geometrical significance of Bochner's conditions has not been 
sufficiently studied (see below). 

With the example of the complex projective space in mind Rauch 
introduced the notion of a pinched riemannian manifold. A rieman­
nian is said to be a-pinched if its sectional curvatures R satisfy the 
inequalities : aA SR^A f or a positive constant A. Rauch proved the 
following theorem : A complete simply connected a-pinched riemannian 
manifold with a = 0.75 is homeomorphic to the sphere, [114], [ l lS ] . 

By utilizing Bochner's conditions for the vanishing of the second 
Betti number Berger derived the following theorem [17]: A compact 
a-pinched riemannian manifold M such that dim M = 2m (resp. dim M 
= 2ra + l) and a>\ (resp. >2m — 2/&m — 5) has its second Betti num­
ber equal to zero. 
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I t was Klingenberg who observed that in the even-dimensional 
case a lemma of Synge can be utilized to give a simpler proof of 
Rauch's theorem and improve the result. Synge's lemma says the 
following: Let M be a simply connected compact even-dimensional rie­
mannian manifold whose sectional curvature is > 0 . Let g be a closed 
geodesic of minimum length among the closed geodesies of M. Then there 
is a family of closed curves converging toward g, which are all shorter 
than g. 

The combined efforts of Klingenberg and Berger lead to the follow­
ing theorem [IS], [72] : Let M be a simply connected riemannian mani­
fold which is a-pinched. If a> J, M is homeomorphic to a sphere. If 
a — \ and M is even-dimensional and not homeomorphic to a sphere, then 
M is a compact symmetric riemannian manifold of rank 1 with its 
canonical metric. The proof of this theorem is difficult ; the main tools 
are the Alexandrow-Rauch-Toponogov comparison theorem and the 
Morse critical point theory [74]. 

The symmetric riemannian manifolds of rank 1 mentioned above 
are the complex or quaternionic projective spaces or the Cayley 
plane. According to a theorem of H. C. Wang [132], these, together 
with the spherical and elliptic spaces, are the only compact and con­
nected two-point homogeneous spaces. 

Generally it is difficult to decide whether a differentiable manifold 
can be given a riemannian metric of positive curvature. The answer 
is not known even for the manifold S2XS2 (S2 = two-dimensional 
sphere) and for Milnor's exotic spheres. Besides the examples men­
tioned above the only known simply connected spaces having a rie­
mannian metric of positive curvature are two examples given by 
Berger [ l ô ] : These are homogeneous spaces of dimensions 7 and IS 
respectively and are not homeomorphic to the sphere. No topological 
property is known for a compact simply connected manifold to carry 
a riemannian metric of positive curvature. 

The homeomorphism theorem of Klingenberg and Berger was im­
proved by D. Gromoll [57] and E. Calabi to a diffeomorphism theo­
rem : There exists a number ôn depending onn (0<8 n < 1, lim^,» ôn = 1) 
such that if a simply connected riemannian manifold M of dimension n 
is 8n-pinched, then M is diffeomorphic to the n-sphere with its usual 
differentiable structure. The best value of dn is not known; current esti­
mates of it tend rapidly to 1. 

These pinching theorems have been extended to complex Kâhler 
manifolds (cf. §5, 7). For instance, Andreotti and Frankel proved 
that if a compact Kàhler manifold of complex dimension 2 has posi­
tive sectional curvature, it is complex analytically equivalent to the 
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complex projective plane [52]. More general results have been ob­
tained by doCarmo, S. Kobayashi, Klingenberg, Bishop-Goldberg, 
etc. [21], [22], [48], [73], [75]. 

Given a manifold, it is natural to ask for the "simplest" riemannian 
metric which can be defined on it. For a compact two-dimensional 
manifold this will be one of constant gaussian curvature; the curvature 
is positive for the sphere, zero for the torus, and negative for a surface 
of genus > 1 . For high dimensions constancy of the sectional curva­
ture will lead to the space forms and it is known that not every mani­
fold has a riemannian metric of constant curvature. A more general 
class of riemannian metrics consists of the Einstein metrics, which 
are defined by the condition that the Ricci tensor is a scalar multiple 
of the fundamental tensor. I t is not known whether every simply con­
nected manifold can have an Einstein metric. As an Einstein metric 
on a three-dimensional manifold is necessarily of constant curvature, 
the problem has a bearing on the Poincaré hypothesis that a compact 
simply connected three-dimensional manifold is homeomorphic to the 
sphere. 

A result in this direction is the following theorem of Yamabe 
[ l40] : A compact riemannian manifold of dimension ^ 3 is confor-
mally equivalent to one of constant scalar curvature. It is not known whether 
the sign of the scalar curvature is a global conformai invariant. 

3. Connections [5], [8], [40], [43], [50], [63], [78], [94]. The 
classical example of a connection is the parallelism of Levi-Civita in 
riemannian geometry. When the riemannian manifold is a surface in 
ordinary euclidean space, the parallelism along a curve is obtained 
by taking the tangent developable surface and rolling it on a plane. 
Parallelism is at the basis of the notion of curvature, for geometrically 
curvature measures the dependence of parallelism on the curve. For 
higher dimensions algebraic concepts enter and there is no extra work 
to develop the theory in a more general setting. 

Let G be a Lie group of dimension r, and let L(G) be its Lie algebra. 
On a differentiate manifold M we consider exterior differential 
forms (to be abbreviated as e.d.f.), with values in L(G). A multiplica­
tion can be introduced as follows: Let Xit 1 ^i^r, be a basis in L{G). 
An L(G)-valued e.d.f. can be written 

(3) X = Z K ® X<> 

where X» are ordinary e.d.f .'s. If 

(4) M = E M' ® Xt 
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is a second L(G)-valued form, we define the product 

(5) [A,ju] = 2 > « A / * y ® [X<,Xil 

This definition is clearly independent of the choice of basis in L(G). 
If X, ix are of degrees /, m respectively, we have 

(6) [xI(.] = (-irkA]. 
Let a?*, 1 ïê-i^r, be the dual basis of Xi. By left translations they 

can be identified with left-invariant linear differential forms on the 
group manifold G. Then 

(7) co = X co* <g> Xi 
i 

is an L(G)-valued left-invariant linear differential form on G, called 
the Maurer-Cartan form. The Maurer-Cartan equation can be writ­
ten 

(8 ) dœ = — f [co, co J. 

Consider an inner automorphism of G defined by s—tasa"1, where 
a, s £ G and a is fixed. This leaves fixed the unit element of G and 
induces an automorphism on L(G), which we call ad (a). Clearly ad (a) 
has the properties 

ad(a&) = ad(a)ad(è), a, b £ G 

ad(a)[\, M] = [ad(a)X, ad(a)ju], 

where X, /* are the forms considered above. 
A connection is most conveniently defined as a structure on a prin­

cipal fiber bundle. A simple example of a principal fiber bundle is the 
space of all orthonormal frames in euclidean space. I t is a fiber space 
over the euclidean space itself, the projection being defined by taking 
for an orthonormal frame its origin, so that a fiber consists of all 
orthonormal frames with the same origin. The generalization of this 
classical concept in geometry and kinematics leads to the method of 
moving frames of Elie Cartan in differential geometry and to the 
notion of a principal fiber bundle in modern algebraic topology. 
Formally the latter is defined by a differentiable mapping \[/ : B-+M 
and, relative to an open covering { [7, V, • • • } of M, a family of 
"transition functions" guv(x)Çi.Gy xÇ.Ur\V, defined for every pair 
of members of the covering satisfying UC\ V^^y such that : (1) \p~1(U) 
is a product UXG and has the local coordinates (x, s), xG Z7, s £ G ; 
(2) For x £ Ur\V, the local coordinates (x, s), (x, 2), s, /GG, relative 
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to U and V respectively, define the same point if and only if 
s = guv(x)t, the multiplication at the right-hand side being in the 
sense of group multiplication in G. Thus a fiber yl/~l{x) has the struc­
ture of a group manifold defined up to left translations. Right trans­
lations have a meaning, not only on a fiber, but on B itself; it is 
locally defined by b = (x> s)-*ba = (x, sa). 

At a point 6 £ 5 w e call the tangent space V(b) to the fiber the verti­
cal space. A subspace in the tangent space of B at &, which has only 
the zero vector in common with V(b) and which, together with V(b), 
spans the tangent space, is called a horizontal space. A connection 
in the bundle B is a field of horizontal spaces which is stable under 
the right translations of B. Instead of the horizontal spaces we can 
equally well define the connection by their orthogonal spaces in the 
cotangent spaces. This in turn can be described as an L(G)-valued 
linear differential form cf>(b) in B, such that its restriction to a fiber is 
the Maurer-Cartan form and such that under right translations of B 
it satisfies the condition 

(10) 4>(ba) = adOr-1)*^). 

In terms of the local coordinates (x, s) in \p~~l( U), this condition means 
that </>(&) is of the form 

(11) 4(b) = œ(s) + zdis-^Suix, dx), 

where Ou(x, dx) is an L{G)-valued linear differential form in U. By 
equating the expressions for </>(b) in \pr~1(Urs\V)f we get 

(12) o)(guv(x)) + ad(guv)0u(x, dx) = 0v(x, dx). 

This formula gives the relation between du, Ov in UC\ V. 
A sectionally smooth curve in B is called a horizontal curve, if it 

is everywhere tangent to a horizontal space of the connection. To a 
given point bÇiB all the elements &£G such that b and ba can be 
joined by a horizontal curve form a group Hb, called the holonomy 
group at b. I t is easy to see that the holonomy groups H&, Hv a t two 
points by b'ÇLB are conjugate to each other in G. 

The connection defines an absolute differentiation or covariant 
differentiation in 5 , as follows: Let rj be an exterior differential form 
of degree q in B, with values in a vector space E. Its absolute differen­
tial DT) will be of degree g + 1, also with values in E. To define it we 
consider an exterior differential form to be an alternating multilinear 
function of vector fields. If X is a vector field in B, we denote by VX 
and HX its projections in the vertical and horizontal spaces respec­
tively, so that X = VX-\-HX. Then Drj is defined by the equation 
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(13) Dr,(Xu • • • , Xt+1) = dn(HXu •••, HXt+1), 

where Xi, • • • , Xq+i are g + 1 vector fields in B. 
Using this definition we compute the absolute differential of the 

connection form <j>. By (11) we find 

(14) d<t> + Jfo, <t>] = idir^dSu + %[du, Su]}. 

From this it is seen that the common expression is D<£. Putting 
$ = D(j> and 

(15) %u = dOu + l[0u, Bui 

we have 

(16) $ = 3Ld(s-l)<du. 

The L{G)-valued quadratic differential form <£ is called the curvature 
form. In UC\ V we have 

(17) ®u = 2Ld(guv)@v. 

In the usual treatment the curvature form is described by the family 
of forms {<du} with the transformation law (17). 

Now let G be a subgroup of a Lie group G'. Every element # £ G 
defines an automorphism ad (a) : L(G')—*L{G'), which leaves L(G) in­
variant. I t induces a linear mapping of the quotient space L(Gf)/L(G) 
into itself, which we also denote by ad (a). The situation occurs that 
we have a G-connection in a G'-bundle, or, more precisely, that we 
have a connection in the associated principal bundle with the group 
G', when the bundle B is considered to have the structural group G. 
With the covering { [7, V, • • • } of M the curvature form of the con­
nection will be given by a family of L(G') -valued quadratic differen­
tial forms {®tf}, satisfying the relation 6[7 = ad(gt;F(x))©7 in UT\V. 
The projections of these forms into the quotient space L(Gf)/L{G) 
constitute the torsion form. 

The curvature forms define the local properties of a connection and 
the holonomy groups iJ& its global property. Ambrose and Singer 
showed how the Lie algebra of H& can be determined from the curva­
ture forms [5]. 

EXAMPLE. Consider the frame bundle of a manifold M of dimension 
n (a frame is an ordered set of n linearly independent tangent vectors 
with the same origin). In this case G = GL(w, R) and G can be con­
sidered to be the group of all nXn nonsingular matrices. Its Lie alge­
bra has as underlying vector space that of all nXn matrices, non-
singular or singular. For gÇzG, the Maurer-Cartan form is co = g~1dgi 

while a,d(g)X = gXg~~1, XÇzL(G), in the sense of matrix multiplica-
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tion. If u\ vk, 1 £i, k^n, are local coordinates in £/, V respectively, 
we have 

(i8) guv=(i£)' ^=(çr^«0-
The transformation formula (12) becomes 

d V ^ i dum du1 . _ du4 „ i 

(19) —-— = £ rml — —r+ E — rw 
dvkdv3

 m,i dvfc dv' i dvl 

where î% are the coefficients in 6v. This is the transformation formula 
for the "components" of an affine connection in the usual form. 

Returning to the general case, it follows from (12) and a simple 
extension argument tha t a connection always exists in a principal 
fiber bundle. In the case of the frame bundle of a manifold this im­
plies that the bundle space is topologically parallelisable, i.e., there 
are n2+n linear differential forms in the space, which are everywhere 
linearly independent. 

The notion of a connection is a t the basis of many fields of differen­
tial geometry, such as riemannian, hermitian, as well as projective 
and conformai differential geometries. Our treatment adapts well 
both to the local theory and to the study of the homology (with real 
coefficients) of principal fiber bundles. A close relationship exists 
between the curvature forms and the characteristic classes of a fiber 
bundle (cf. §9). 

4. G-structure [18], [33], [41], [ 129]. Among the important struc­
tures on a manifold is the reduction of the structural group of the 
tangent bundle, which we explain as follows: 

Let T be an ^-dimensional real vector space and T* be its dual 
space. Denote their pairing by (y, £)G-R, y€zT, £ G r * . We let 
GL(w, R) act on T on the left and on T* on the right, so that the 
following relation holds: 

(20) (gy, Ö = (y, fe>, g G GL(n, R). 

The tangent bundle over M has the local charts (x, yu), x(EJ7, 
yuÇz T, which are the local coordinates of the tangent vectors relative 
to U. The local coordinates (x, yu) and (x, yv) in UC\ V define the 
same tangent vector if and only if yu — guv(x)yvf where guv: UCW 
—>GL(w, R). Consider a subgroup G of GL(w, R); we say that the 
structural group of the tangent bundle is reduced to G, if all guvix) 
GG. Such a reduction will be simply called a G-structure. 
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EXAMPLE 1. An 0(n)-structure is nothing else but a riemannian 
structure. 

EXAMPLE 2. For n = 2rn consider GL(m, C) as a subgroup of 
GL(w, R). Then a GL(m, C)-structure is what is called an almost 
complex structure. 

Many methods are known in the theory of fiber bundles to find 
necessary conditions for a manifold to have a G-structure (obstruc­
tion theory, characteristic classes, cohomology operations, etc.) and 
we will not discuss them. We will go further to study the properties 
of a given G-structure. We take a basis in T and call all frames ob­
tained from this basis frame by the transformations of G permissible 
frames. If M has a G-structure, it makes sense to call a frame of M 
permissible, if it is so in a local coordinate system. The dual basis of 
a permissible frame in the cotangent space will be called a permissible 
coframe. In the associated principal bundle of the G-structure the 
permissible coframes give rise to n linearly independent linear differ­
ential forms, which are globally defined. 

The problem of local invariants of a G-structure is essentially the 
following problem of equivalence of Elie Cartan [33]: Given a set 
of n linearly independent linear differential forms d\;(ut du) in the 
coordinates uk, and another such set Oy(v, dv) in the coordinates vk, 
l g i , fe^w, and given a Lie group GCGL(n, R). To determine the 
condition tha t there exist functions 

(21) v* = v^u1, • • • , «»), 

such that the 0y(v(u), dv(u)) differ from the 0\j(u, du) by a trans­
formation of G. The last condition gives rise to an exterior differential 
system. As a first step to the solution of the problem one considers 
the differential forms </>i= ]C/gj0ff> (gJ)GG, with the coordinates of 
G as auxiliary variables. In our terminology these are the permissible 
coframes. We illustrate this by some examples for n = 2 : 

EXAMPLE 3. G = SO(2) and is the group of all matrices of the form 

(cos X — sin X\ 

sin X cos X/ 

With X as auxiliary variable we have 

(22) 4>l = cos X01 + sin X02, <t>2 - - sin X01 + cos X02. 

There is a linear differential form 

(23) 7T - dX + lin comb of 01, 02, 

which is uniquely determined by the conditions 
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(24) dï1 = ir A <t>2, d<f>2 = - 7T A *x. 

The exterior derivative of ir is of the form 

(25) dw = - 2T01 A <*>2. 

One sees that X is the gaussian curvature of the riemannian structure. 
The forms <£\ <£2, ir in the associated principal bundle with the group 
NSO(2) (we denote by NG the nonhomogeneous linear group whose 
homogeneous part is G) can be interpreted geometrically as defining 
a connection in the bundle. 

EXAMPLE 4. G is the group of all matrices of the form 

\ 0 X/ , 

X ̂ 0 . We put 

(26) tf)1 = X01, <t>2 = X02. 

There is a uniquely determined linear differential form 

d\ 
(27) 7T = h l in c o m b of 01, 02, 

A 

satisfying the conditions 

(28) d<l>1 = 7T A * S ^ 2 = 7T A *2. 

W e find 

( 2 9 ) rfTT = ^C^1 A <t>\ 

where A is of the form A(ul, u2)/\2. The forms <£\ 02,7r define a con­
nection in the associated principal bundle with the group NG. 

The structure can be interpreted as a three-web of plane curves in 
the sense of Blaschke [24], the curves being defined respectively by 
the equations 

(30) 01 = 0, 02 = 0, 01 + 02 = 0. 

The condition A = 0 is a necessary and sufficient condition that the 
curves can be locally mapped into three families of parallel straight 
lines. I t can also be interpreted geometrically as the condition for a 
certain hexagonal configuration to exist. 

EXAMPLE S. G is the group of all matrices of the form 

C"0. 
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\2+fx29£0. Again put 

4>i = X01 + iid\ 
(31) 

<£2 = _ M Ö i + x02 . 

There are linear differential forms TTI, 7r2 satisfying the equations 

# X = Xi A *X + 7T2 A *2 , 
(32) 

dtf = - 7T2 A 4*1 + * i A *2. 
But they are not completely determined by these conditions. The 
structure is given by (01)2 + (02)2, determined up to a positive factor. 
I t is therefore the two-dimensional conformai structure. No connec­
tion can be introduced, which will depend on this structure alone; for 
otherwise it would mean that the local homeomorphisms leaving the 
conformai structure invariant would depend on a finite number of 
constants. This is a first example of a pseudo-group structure. 

The general problem of equivalence is a problem on exterior differ­
ential systems of a certain type. In the real analytic case the theorem 
of Cartan-Kuranishi [86] says that in a finite number of steps the 
system can be prolonged either to a system without solution or to a 
system in involution. They correspond respectively to the cases that 
the two G-structures are locally inequivalent or equivalent. In the 
latter case there may be a pseudo-group of local homeomorphisms, 
other than the identity, which leaves the structures invariant. To 
carry out the general program of Cartan-Kuranishi in a particular 
case is not always an easy problem and very frequently leads to 
complicated calculations. We mention two simple instances where 
the problem of equivalence is not solved: (1) Almost complex struc­
ture G = GL(w, C), n = 2m. The problem of equivalence was solved 
by Libermann for m = 2 [93]. (2) Symplectic structure, where G is 
the linear group in a space of dimension 2m consisting of all trans­
formations leaving invariant an exterior quadratic form of maximum 
rank. This is in other words the local classification of antisymmetric 
covariant tensor fields a»-y = —ay» of order two and maximum rank. 

Two classical cases where the problem of equivalence is solved and 
a connection attached to the structure are the following: 

EXAMPLE 6. G — 0(n). This is the riemannian structure where the 
Levi-Civita connection can be attached. 

EXAMPLE 7. G is the group of all matrices of order n ( è 3) of the 
form X^4, X>0, where A is orthogonal. This is the conformai struc­
ture, to which a normal conformai connection, uniquely determined, 
can be attached. 
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There are various advantages to be gained in attaching a connec­
tion to a G-structure, if this is possible. First the structure is put in a 
general setting, whose results will then be applicable. Secondly, it 
will be possible to introduce geometrical concepts. In fact, the geom­
etry of a connection along a curve is the same, whether the curvature 
form is zero or not (Fermi's theorem). Thus the geometry appears 
more clearly as a generalization of classical geometry. Thirdly, G-
structures equivalent to a connection are in a sense simpler. For in­
stance, the group of automorphisms leaving the structure invariant 
will be a Lie group. 

I t appears from the examples that it will be desirable to consider 
the associated principal bundle with the group NG. We are actually 
considering a bundle with the group NG with a cross-section into the 
associated bundle of homogeneous spaces NG/G, making it a bundle 
with the structural group G. In such a bundle there is a torsion form 
associated to a connection with the structural group NG. The ques­
tion arises as to whether it is possible to attach uniquely a connection 
by properties of this torsion form. I t can be proved that such a con­
nection exists whenever G is compact [43]. In the particular case of 
the riemannian structure the Levi-Civita connection is completely 
determined by the vanishing of the torsion form. For general compact 
G there may be different ways of attaching the connection which will 
be characterized by different properties of the torsion form. In this 
context it would be a problem of some interest to determine the 
properties of the noncompact G, for which the answer to the above 
question is affirmative. (Cf. §13 on the Weyl-Cartan theorem.) 

An almost complex structure whose torsion form (this can be de­
fined, although there is no connection) is zero is called integrable. 
Newlander and Nirenberg proved that such an almost complex struc­
ture is subordinate to a complex structure [101], [103]. I t follows 
tha t an almost complex manifold whose torsion form vanishes iden­
tically is a complex manifold. This is an example of a pseudo-group 
structure. No connection can be attached to a complex manifold 
from its complex structure alone. 

Among the G-structures those to which a connection can be at­
tached and those which are subordinate to a pseudo-group structure 
seem to be the extreme cases. They are among the most important 
G-structures. The others are probably too complicated to be of much 
geometrical interest. 

A further generalization is to structures which involve elements of 
contact of higher order. An example is the projective geometry of 
paths of Veblen and T. Y. Thomas. Much work on the foundations of 
this generalization has been done by Ehresmann and his school. 
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5. Harmonic forms [64], [68], [119], [134]. A general method 
which gives global implications on the existence of geometrical struc­
tures satisfying differential conditions is the theory of harmonic differ­
ential forms of Hodge. Let M be a compact oriented w-dimensional 
riemannian manifold. Let A be the Laplace-de Rham operator on M. 
A differential form rj is called harmonic, if Arj = 0. Since M is compact, 
every harmonic form is closed. All harmonic forms of degree q con­
stitute a real vector space Hq. The fundamental theorem on harmonic 
forms says tha t the linear mapping p: Hq—+Hq(M, R) ( = ^-dimen­
sional cohomology space of M with real coefficients) defined by send­
ing a harmonic form to its cohomology class in the sense of de 
Rham's theorem is a one-one isomorphism. We are going to consider 
the existence of certain structures on ikf, which will allow a finer 
analysis of the cohomology ring of M with real coefficients through 
the application of harmonic forms. 

Let G be a subgroup of SO(n). Then a G-structure on M defines an 
orientation of M and a riemannian structure, to be called the associ­
ated riemannian structure. Such a G-structure is called holonomic, 
if it satisfies one of the following three conditions, which are equiva­
lent [43], [84], [135]: 

(1) The homogeneous holonomy group of the Levi-Civita connec­
tion (of the associated riemannian structure) is G or a subgroup of G. 

(2) Under the Levi-Civita parallelism permissible frames remain 
permissible. 

(3) There is a connection with the structural group NG, whose 
torsion form is zero. 

I t seems to us that these are the structures to which the harmonic 
forms can be applied most advantageously to derive global implica­
tions. 

Particular cases of a holonomic G-structure include the following: 
EXAMPLE 1. G=U(tn), m = n/2. This is essentially the Kàhler 

structure on a complex manifold in its real formulation. 
EXAMPLE 2. G = SO(p)XSO(n-p), l^p^n-l. This means that 

the manifold has a field of ^-dimensional plane elements parallel with 
respect to the Levi-Civita connection. 

A G-structure on M allows a finer classification of its exterior differ­
ential forms. (This applies also to other tensor fields.) In fact, G acts 
on T* and has an induced representation on Aq(T*)t OSqSn. Let 
W be an invariant subspace of Aq(T*) under the action of G. A q-
form on M is said to be of type W if the element it associates to every 
point xÇzM belongs to the corresponding subspace W%. If GCO(w), 
then every invariant subspace W has an orthogonal space WL which 
is also invariant and we can define to a g-form t\ its orthogonal projec-
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tion PwV into a g-form of type W. More generally, if Q: W—*Ar(T*) 
is a linear mapping which commutes with the action of G, we define 
an operator Q on g-forms of type W, the image being then an r-form. 
An example of such a mapping Q, besides Pw, is the exterior multi­
plication by an exterior (r — g)-form which is invariant under G. When 
there are such operators, it is of importance to find the conditions 
under which they commute with the Laplace-de Rham operator, 
and we have the theorem: 

Let M have a holonomic G-structure. Then JcVA = AiV. Moreover, if 
Q is the multiplication by an invariant exterior differential form, we have 
also ÇA=A<2. 

The proof of this theorem makes use of an explicit formula of R. 
Weitzenböck for A. (The formula allows a simple derivation of Boch-
ner's theorem on the relation between curvature and Betti numbers 
of a compact riemannian manifold. Considering the importance of 
the operator A, it should have further applications.) I t follows from 
the theorem that if rj is harmonic, then PwV is also harmonic. Hence if 
Aq(T*) is a direct sum of the invariant subspaces Wi, • • • , Wk, the 
space Hq of harmonic forms of degree q is a direct sum of the spaces 
of harmonic forms of types Wi, • • • , Wk respectively. The second 
part of the theorem leads to isomorphisms of subspaces of harmonic 
forms of different degrees. The analysis of the cohomology groups 
(over the real field) of M is reduced to a purely algebraic problem 
(namely, tha t of studying the induced representation of G on A(!T*)). 
From this one derives various global implications from the existence 
of a holonomic G-structure. 

EXAMPLE 1 (CONTINUED). The group G leaves invariant an exterior 
form of degree 2 and maximum rank. Denote by Ü the corresponding 
differential form on M. Introduce on the exterior differential forms 
rj oî M the operators 

(33) Lr\ = 0 A V, A = *~1L*. 

A form rj is called primitive, if Arj = 0. I t follows from our commutativ-
ity theorem that every harmonic form rj can be written uniquely as 

(34) v= £ I/*, p = deg v 
rèniax(0,m—p) 

where r\r are harmonic and primitive (Hodge's decomposition theo­
rem). For compact orientable manifolds with such a holonomic G-
structure we can derive the following global properties: 

(1) Every odd-dimensional Betti number is even. 
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(2) Let u be the cohomology class determined by Q. The homo-
morphism Hr~2(M, R)—>Hr(M, R) defined by a—^aSJu ( = cup prod­
uct of a, u), aÇ:Hr~2(M, R), is, for r^m, an isomorphism. 

(3) The homomorphism Hr(M, R)->H2™~r{M, R), r<>rn, defined 
by a-+aSJum~r, aÇiHr(M, R), is a one-one isomorphism. 

It is worth noting that these properties can be derived without 
reference to the complex structure. 

EXAMPLE 2 (CONTINUED). In this case we can derive that the p-
dimensional Betti number is ^ 1. For p== 1, a further analysis of the 
situation gives the inequality 6 2 ^ 6 1 — 1 , b1 and b2 being respectively 
the one and two-dimensional Betti numbers. I t would be natural to 
ask whether for p = 1 the conditions are now sufficient. 

The use of harmonic forms also gives information on the multi­
plicative structure of the cohomology ring H*(M, R), particularly 
the index r(M). The latter is defined as follows: T{M) = 0, if dim M^0, 
mod 4. If dim M — 4k, we consider in the real vector space H2k(M, R) 
the function f(u, v) = (uyUv)Mt u, v£:H2k(M, R), which is the value of 
the cohomology class uKJv on the fundamental class M. This func­
tion is a symmetric nondegenerate bilinear form. r{M) is defined to 
be the number of its positive eigenvalues minus the number of its 
negative eigenvalues. 

Consider now the space A2k(T*) = Wi^W2i where W\ (resp. W2) 
is the subspace of all elements invariant under * (resp. transformed 
to its negative by *). Let hi be the dimension of the space of harmonic 
forms of degree 2k and type Wiy i — \, 2. Then a study of the multi­
plicative properties of harmonic forms gives the theorem: r{M) 
= hi — h2. From this theorem Hodge^ index theorem on compact 
Kàhler manifolds can be derived by purely algebraic considerations. 

We will mention another application of the above index theorem: 
Suppose that a compact orientable manifold of dimension 4k has 2k 
linearly independent vector fields which are parallel with respect to 
a riemannian metric. Then its index is zero. Examples (due to 
Atiyah, private communication) exist of four-dimensional compact 
manifolds with nonzero index but with two linearly independent vec­
tor fields (nonparallel with respect to any riemannian metric). 

6. Leaved structure [51], [60 ] , [116], [117]. From the point of 
view of §4 a leaved structure is a reduction of the structural group 
G{n, R) of the tangent bundle of a manifold of dimension n to the 
subgroup 
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such that a local differential condition is satisfied. More precisely, if 
the structural group of the tangent bundle is so reduced, that of the 
cotangent bundle will be reduced accordingly, and a field of permis­
sible coframes will be given locally by the linear differential forms 
(01, • • • , 0n), which are linearly independent and are such that 
$p+i} . . . y 0n a r e determined up to a transformation of GL(n — p, R). 
A leaved structure is such a reduction satisfying the further condi­
tions 

(35) d$i A 0p+1 A • • • A 0W = 0, p+lgign. 

By Frobenius' theorem this means that the pfaffian system 

(36) 0*>+1 = • • • = dn = 0 

is completely integrable, i.e., there exists at each point a local co­
ordinate system (x1, • • • , xn) relative to which the system becomes 

(37) dx^1 = • • • = dxn = 0. 

The integer p is called the dimension of the leaved structure, and 
n— p its codimension. A leaf is a "maximal" integral submanifold. 

The simplest example of a leaved structure is given by a differential 
equation of the first order in the plane. A consequence of the Poin-
caré-Bendixon theory says that the leaves go to infinity in both 
directions. The problem of classifying the leaved structures in the 
plane was solved by W. Kaplan [69]. In particular, Kaplan proved 
tha t to a leaved structure in the plane there exists a continuous real-
valued function in the plane, which has neither a maximum nor a 
minimum and which is constant on the leaves. In this respect it may 
be of interest to mention that Wazewski gave examples of C°°-leaved 
structures in the plane such that any differentiable function in the 
plane which is constant on the leaves is a constant. 

Another example is the leaved structures (of dimension 1) on a 
torus [125]. Two extreme cases are: (1) All leaves are closed. (2) The 
leaves are ergodic. If the torus is taken to be a unit square with op­
posite sides identified, the second case occurs when the directions of 
the field makes a constant angle cm {a irrational) with the sides. The 
fundamental theorem of Denjoy says that (under sufficient smooth­
ness hypotheses) if there is no closed leaf, then every leaf is ergodic. 
Denjoy's work has been extended by A. J. Schwartz to arbitrary 
closed surfaces [l20]. If we interpret a leaved structure of dimension 1 
as the action of a surface by the real line, we define a minimal set 
of this action to be a nonempty closed invariant set, which contains 
no proper subset with the same property. The Den joy-Schwartz 
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theorem says that if a compact connected two-dimensional surface is 
under the action of the real line, then a minimal set is: (1) either a 
single point; (2) or a closed curve; (3) or the whole surface, the last 
case happening only for the torus. 

Another simple example of a leaved structure is given by a coset 
decomposition of a Lie group relative to a subgroup. 

A notable example of a leaved structure of codimension one on the 
three-sphere S3 was given by G. Reeb [116]. Geometrically this can 
be described as follows: Consider Sz as the union of two solid tori 
with a two-dimensional torus as common boundary. In each solid 
torus take a leaved structure of codimension one whose integral sub-
manifolds are like paraboloids with the boundary torus as a limiting 
surface. These leaved structures can be fitted together to give a leaved 
structure on S8. The same construction cannot be extended to a 
sphere of higher odd dimension, and it is an open problem whether 
S2m+1, m>l, has a leaved structure of codimension one. 

Reeb's leaved structure is not analytic and he raised the question 
whether an analytic one (of codimension one) exists on S3. The 
answer was given as negative by A. Haefliger, who proved the fol­
lowing theorem [59 ] : Let M be a compact real analytic manifold which 
has a real analytic leaved structure of codimension one. Then the funda­
mental group TTI(M) is not finite. 

If a manifold has a leaved structure of dimension p, it must have 
a G-structure, with G = GL(p, R). The problem, called fundamental 
by Reeb, is whether this condition is sufficient. In fact, it is not 
known whether any GL(£, 2£)-structure is homo topic to a leaved 
structure of dimension p, i.e., whether they can be connected by a 
differentiable family of GL(£, R)-structures. A compact orientable 
three-dimensional manifold is parallelisable, but it is an open ques­
tion whether it has a leaved structure of codimension one. 

When a manifold has a leaved structure, an important invariant 
is the holonomy group in the sense of Ehresmann. It gives an accu­
rate description of the behavior of the leaves in the neighborhood of a 
leaf. An important problem is whether a leaved structure has a com­
pact leaf. On the three-sphere 5 3 the existence of a compact leaf for a 
leaved structure of dimension one (respectively two) was conjectured 
by H. Seifert (respectively by H. Kneser) [121]. A proof of Kneser's 
conjecture has been announced by S. P. Novikov [106]. 

Let Xi, - - • , Xp be vector fields, which span the tangent spaces 
of the leaves. Then condition (35) is equivalent to the condition that 
the brackets [Xi, Xj] are linear combinations of Xi, • • • , Xp. Milnor 
defined as the rank of a manifold the maximum number of vector 
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fields Xi, • • • , Xp, everywhere linearly independent, such that 
[Xi, X , ] = 0 , l ^ i , JSP- Lima proved that Sz has rank one [95]. 
This was generalized by Lima and H. Rosenberg to the result tha t 
the rank of a compact simply connected manifold of dimension n 
is a t most n — 2. The problem is closely related to the study of the 
action of noncompact transformation groups on a manifold. Except 
when the transformation group is one-dimensional (flows on a mani­
fold), very little is known. 

An important notion on the leaved structure is that of "structural 
stability," which was initiated by Andronov and Pontrjagin [7] in 
the case of a disk and whose study has so far been restricted to one-
dimensional leaves. A structural stable vector field is one such that 
the topological properties of the trajectories remain invariant under 
a small perturbation of the vector field (relative to some topology). 
Peixoto proved tha t the structurally stable vector fields on a com­
pact two-dimensional surface are open and dense in the set of all 
vector fields on the surface [109 ]. The study in the higher-dimen­
sional case is wide open. In fact, Smale gave examples of manifolds 
in which the structurally stable vector fields are not dense in the set 
of all vector fields. What makes the theory in higher dimensions much 
more difficult is the presence of recurrence. An important recent re­
sult is the "closing lemma" of C. C. Pugh [113]. Among its conse­
quences is the theorem that the closure of the set of all nonwandering 
points is the closure of the set of all closed trajectories. 

7. Complex structure [66], [134]. The existence of a complex 
structure on a manifold is a nontrivial fact, so that an understanding 
of complex manifolds should begin with some examples. Two obvious 
necessary conditions are even dimensionality and orientability. An 
orientable manifold of two (real) dimensions always has a complex 
structure. The difficulty in proving this is the local theorem of Korn 
and Lichtenstein to the effect that a two-dimensional (positive defi­
nite) C°°-riemannian manifold is locally conformai to the euclidean 
plane. For higher dimensions the simplest examples are the w-dimen-
sional complex euclidean space Em(C) (or simply Em) and the m-
dimensional complex projective space Pm(C) (or Pm). (Ei is known as 
the gaussian plane and P i as the Riemann sphere in complex function 
theory.) The next examples are to be their quotient manifolds and 
submanifolds. Compact submanifolds of Pm are, by a theorem of 
Chow, the same as the nonsingular algebraic varieties. Of course 
there are no compact submanifolds in Em, other than points, as there 
is no nonconstant analytic function on a compact complex manifold. 

An example of a quotient manifold of Em is Ew/A, where A is the 
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discrete group generated by 2m translations linear independent over 
the reals. This is called a complex torus. Depending on the choice of 
A, there are some (those satisfying the Riemann conditions) which 
are isomorphic to algebraic varieties and there are also some on 
which there exists no nonconstant meromorphic function. The former 
are called abelian varieties. 

I t is equally possible to take an open submanifold of Em and con­
sider a quotient space of it. If zi, • • • , zm are the coordinates of Em 

and 0 = (0, • • - , 0), then the discrete group Ax generated by the 
transformations 

(38) zk = 2zk, 1 g k S m, 

has no fixed point in E w — 0 and (Em — 0)/Ai is a complex manifold. 
This is called a Hopf manifold. Topologically it is homeomorphic to 
S1XS2m~l. For m> 1 a Hopf manifold cannot be given a Kâhler struc­
ture and is therefore not algebraic, because the latter must have its 
second Betti number ^ 1 . 

To find further complex manifolds an obvious process is to form 
cartesian products. More significant are the blowing-up process (<r-
process of H. Hopf) and fiber space constructions. 

An example of blowing-up is as follows: In the projective plane P 2 

let a line element (p, L) be the pair consisting of a point p and a line 
L through p. Consider all line elements (p, L) such that L passes 
through a given point b of P2 . They form a complex manifold M2 of 
two (complex) dimensions. There is a complex analytic mapping 
ƒ: M2—>P2, defined by f(p> L) ==p. Then ƒ is one-to-one for Ms—f^Q)) 
and /_1(&) is isomorphic to Pi . We describe this geometrically by 
saying that ikf2 is obtained from P 2 by blowing up a point. Generally 
we can blow up a point b in any complex manifold Mm, leaving the 
points of Mm — b unchanged and replacing b by Pm_i. The same 
process generalizes to the blowing-up of any nonsingular submanifold. 
The process has its origin in the birational transformation of algebraic 
varieties, where it is known as a quadratic transformation. I t exists 
only for m> 1. Blanchard proved that if a compact Kâhler manifold 
is blown up along a nonsingular submanifold, the resulting manifold 
is again Kâhlerian [23]. The process is of great importance in the 
theory of complex manifolds. 

A simple application is to a construction due to Andreotti. Let T 
be a complex torus group of dimension m > 1. (The difference between 
a complex torus and a complex torus group is that the latter has the 
additive group structure, i.e., a certain point singled out as the neu­
tral element of the group.) Let a be the automorphism OC ^ OC, OC V J. y 
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and consider the quotient space T/a, The latter has singularities, 
22m in number, arising from the fixed points of a, which are of a very 
simple type. They can be resolved by the blowing-up process, leading 
to a nonsingular complex manifold K, called the Kummer manifold. 
K is simply connected (Spanier [127]). If m = 2 and T is an abelian 
variety, K is the classical Kummer surface. If T has no nonconstant 
meromorphic function, the same is true of K. Thus we get an exam­
ple of a simply-connected compact Kâhler manifold which has no 
meromorphic functions other than constants. 

If we are interested in compact complex manifolds, the simplest 
class of fiber spaces consists of those of complex tori. In fact, a Hopf 
xnanifold is a fiber bundle of one-dimensional complex tori over a 
complex projective space, with transition functions which are holo-
morphic. In order to have a sufficiently wide class of complex mani­
folds, it is desirable to relax the condition of a fiber space, in the 
sense that the fibers are not required to be isomorphic to each other 
as complex manifolds. Following Blanchard, Calabi, Atiyah, Bott, 
a class of fiber spaces of complex tori can be constructed as follows 
[9]: In E2w let G be the Grassmann manifold of all m-dimensional 
vector spaces through the origin. Let A be the real vector space of 
dimension 2m imbedded as a subset of E2w. Consider the subset JQG 
consisting of those m-dimensional vector spaces which have only the 
zero vector in common with A ; J is an open subset of G. Over J there 
is the universal vector bundle of dimension m, attaching to each 
point of / the corresponding vector space. There is also the trivial 
vector bundle of dimension 2m over 7. Let E' be their quotient bun­
dle. The basis vectors of E2m give by projection in each fiber of E'2m 
vectors which are linearly independent over the reals. The quotient 
space of E' by these 2m vector fields is then a fiber space of complex 
tori over / . One can construct a compact complex manifold out of it 
by considering its restriction to a compact submanifold of / . Such a 
compact submanifold is, for instance, the manifold of all the w-dimen-
sional vector spaces through the origin and lying on the quadric cone 

A + ' ' • + 4» = 0, 

where z\, • • • , JS2W are the coordinates in £2m. It can be seen that 
this is the homogeneous space 0(2m)/U(m). By a theorem of Blanch­
ard [23] the compact complex manifold so obtained (the fiber space!) 
which, as a differentiable manifold, is the product 0(2m)/U(m) 
XT2m (T2m is a real torus of real dimension 2m), has no Kâhlerian 
structure. On the other hand, 0(2m)/U(m)XT2m has a Kâhlerian 
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complex structure derived from those of the two factors. We get in 
this way a manifold which has both Kàhlerian and non-Kâhlerian 
complex structures. The problem is unsolved whether there exists a 
simply-connected compact manifold with the same property. 

Among the nonsingular algebraic varieties a notable family con­
sists of the ruled surfaces, and in fact ruled surfaces with a directrix 
line. In Pn+Z with the homogeneous coordinates (x0i #1, • • • , xn+z) 
consider the normal curve 

X0 = Xi = 0, # 2 = 1 , #3 = t, ' • • , Xn+z = tn+l 

in the linear subspace of dimension n +1 with the equation x0 = xi = 0. 
The lines joining the point of the normal curve with the parameter / 
to the point (1, t, 0, • • • ,0) generates a ruled surface without singu­
larities. We denote it by 2Jn. As a real manifold it is a bundle of S2 

over S2. Topologically there are only two classes of bundles of S2 over 
S2: the cartesian product 5 2 X 5 2 and another. I t can be shown that 
2 n is differentiably the product S2XS2 if and only if n is even. As 
complex manifolds the S n are distinct from each other (a theorem of 
Hirzebruch [65]). Thus S2XS2 is a simply connected manifold which 
admits an infinite number of complex structures. 

Another class of complex manifolds arises from a different context, 
namely those which admit a transitive group of complex analytic 
automorphisms, the so-called homogeneous manifolds. If G is a con­
nected compact Lie group and T a maximal toroid of G, Borel ob­
served that G/T has a complex structure [25]. Goto, Borel, and Weil 
proved that it is an algebraic variety and Goto proved that it is ra­
tional [56], [124]. Wang determined all the compact homogeneous 
complex manifolds with a finite fundamental group, among which are 
the simply connected even-dimensional compact Lie groups [133]. 
Many of these manifolds are non-Kâhlerian, and are thus far from 
being algebraic. The problem requires a detailed analysis of Lie 
algebras. 

The question of the complex structure on a manifold can be gen­
erally divided into four stages: 

(a) Existence of an almost complex structure. This is mainly a 
question on fiber bundles. 

(b) Existence of a complex structure on an almost complex mani­
fold. If a manifold is known to have an almost complex structure, 
then the methods of (a) do not give further information. The integ-
rability conditions will easily decide whether the given almost com­
plex structure is subordinate to a complex structure. If it is not, no 
general method is known to find out whether there is a complex struc-
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ture (except of course when one is given). In this respect the question 
whether 56 has a complex structure remains one of the most urgent 
problems on complex manifolds. A remarkable recent result of van de 
Ven, not yet published, gives an example of a compact four-dimen­
sional almost complex manifold which has no complex structure. The 
absence of a complex structure on this manifold follows from the 
Riemann-Roch-Hirzebruch formula for arbitrary compact complex 
manifolds, which in turn is a consequence of the Atiyah-Singer index 
theorem (see §10). 

(c) Determination of all complex structures on a manifold. Rie-
mann's mapping theorem says that S2 has a uniquely determined 
complex structure. Hirzebruch's example of S2XS2 has an infinite 
number of complex structures. I t is not known whether 5 2 X 5 2 has 
other complex structures than those given by Hirzebruch. Andreotti 
proved that there are no other algebraic structures [6]. Andreotti 
also proved tha t there is only one Kàhler structure on P 2 (the stan­
dard one); Hirzebruch and Kodaira proved that there is only one 
Kâhler structure on P m for odd m [67]. 

(d) If a manifold has a continuum of complex structures, it is im­
portant to give a structure to this continuum in a natural way. The 
classical moduli problem on compact Riemann surfaces consists in 
making an analytic space of dimension 3g — 3 out of the set of com­
plex structures on a Riemann surface of genus g>l [19]. In high 
dimensions Frölicher and Nijenhuis proved that the complex struc­
ture on a compact complex manifold M is rigid, if Hl(M, ® ) = 0 , 
where HX(M, ©) is the one-dimensional cohomology group of M over 
the sheaf of germs of holomorphic vector fields (cf. §8) [53]. Subse­
quently Kodaira and Spencer made extensive studies of the deforma­
tion of complex structures [83]. The crowning achievement is the 
theorem of M. Kuranishi, which says that, for any compact complex 
manifold, there exists a universal family of deformations [87], [88]. 

8. Sheaves [31], [38], [54], [58], [123]. The theory of sheaves is 
one of the most basic and natural concepts on manifolds with a struc­
ture. Let us begin by its definition : 

Let M be a topological space. A sheaf of abelian groups on M, or 
simply a sheaf, is given by: (1) A function x-+Sx, which associates to 
every point xÇzM an abelian group Sx (to be written additively); 
(2) A topology (not necessarily satisfying separation axioms) in 
S = \JxeM Sx, such that the following conditions are satisfied (\[/ de­
noting the mapping 5—»If, defined by \p(Sx) — x) : 

(Si) The mapping cr—>—<r which, to each a (ES associates the in-
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verse — a of a in the group 5^(<r), is a continuous mapping of S into 
itself. The mapping (a, T)—>CT+T defined for the set R = {(o-, r) |\f/(<r) 
=\p(r)} is a continuous mapping of R into S. 

(S2) & is a local homeomorphism, i.e., every cr G S has a neighbor­
hood V such that the restriction of \p to F is a homeomorphism of F 
onto an open subset of M. 

EXAMPLE 1. T H E CONSTANT SHEAF. Let G be an abelian group, and 
let S = MXG. 

The following notions are defined in an obvious way: subsheaf, 
quotient sheaf, homomorphism of sheaves, exact sequence of sheaves. 
Also we can define in the same way sheaves of other algebraic struc­
tures, such as rings, ideals, modules and even nonabelian groups. 

In practice a sheaf is given by a presheaf, which is a family of 
abelian groups Su associated to the members of an open covering 
{U> Vy - - - } of M, such that the following conditions are satisfied : 
(1) To every pair (£7, V) with VC.U there is a homomorphism 
fvu: Su-*SV; (2) To every triple (U, V, W) with WQ VC U we have 
fwu—fwv o f vu- To xÇzM we define Sx to be the inductive limit of 
Su with Uz$x, etc. 

EXAMPLE 2. Let Su be the additive group of continuous real-valued 
functions in U. To VQ U define fvu to be the restriction. In this way 
we get the sheaf of germs of continuous real-valued functions. Sim­
ilarly, there is the sheaf of germs of differentiable functions on a 
differentiable manifold, holomorphic functions on a complex mani­
fold, etc. 

Let M be a topological space and 5 a sheaf of abelian groups over 
M. For every q ̂  0 we can define by the standard Cech theory a co-
homology group Hq(M, S), S being called the coefficient sheaf. To an 
open set UCZM denote by T(U, S) the group of all sections over U 
(a section over U is a continuous mapping 5 : U—+S such that \// o s 
= identity). Let { Ui} be an open covering of M. Then a cochain of 
dimension q is an element f i o . . . iQ&T(Uior\ • • • C^Uiqi 5), which 
is alternating in its indices and is zero if UiQC\ • • • C\Uiq = 0. The 
coboundary is defined in a standard way. The cohomology group of 
the covering is the quotient group of the group of all cocycles of di­
mension q over the subgroup of coboundaries. The inductive limit of 
the cohomology groups of the coverings is the cohomology group 
H*(M, S). 

A homomorphism of sheaves S—+S' induces a homomorphism 
Hq(M, S)^>Hq(M, S') of the corresponding cohomology groups. 
From now on assume M to be paracompact. To a subsheaf R of 5 we 
can define the natural homomorphism 
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««: H«(M, S/R) -» H«+l(M, R). 

Then the fundamental property of cohomology is the following: Let 

0-~>R~>S-+T->0 

be an exact sequence of sheaves on M. The sequence of cohomology 
groups 

0 ~> H°(M, R) -> H°(M, 5) -> JBT0(M, T) -> tf1^, # ) -* tf1^, 5) -> • • • 

is exact. (The homomorphisms are those defined above.) 
EXAMPLE 3. Meaning of H°(M, S). Let { Ui\ be a covering of M. 

A 0-cochain is formed by the sections st-: Ui—^S. I t is a cocycle if 
and only if $»• = $,• in TJiC\lJj7^0. Hence H°(M, S) is the group of all 
global sections of S. 

EXAMPLE 4. Meaning of Hl(M, S). A one-cochain is given by the 
sections s#: UiCWj—^S, whenever TJiC\Ujî£0. I t is a cocycle if and 
only if Sij+Sjk+Ski = 0 for UiC\ UjC\ Uh9^0. If 5 is the sheaf of germs 
of mappings into a topological group Y (F not necessarily abelian), 
Hl(M, S) is the set of all equivalence classes (in the sense of bundles) 
of bundles with the group V. 

EXAMPLE 5. DE RHAM'S THEOREM. Let M be a compact differentiate 
manifold. Let Ap (resp. Cv) be the sheaf of germs of exterior differential 
forms (resp. closed ext. diff. forms) of degree p. In particular, C° is the 
constant sheaf of real numbers. Then the sequence 

0 - » Cp -> Ap —> Cp+l - » 0, 

where i is the injection and d is the exterior differentiation, is exact. (The 
essential point in the proof of this exactness is the so-called Poincaré 
lemma, which says that any closed differential form is locally an ex­
terior derivative.) From this follows the exactness of the correspond­
ing sequence of cohomology groups. But 4 P is a fine sheaf and 
Hq(M, -4*0=0, g = l. (A fine sheaf means essentially tha t its global 
sections can be localized.) I t follows from the exact sequence that 

H*(M, O ) ÊË H*+l(M, O" 1 ) , q > 0. 

By applying this isomorphism successively, we get 

HP+«(M, R) ÊË #°(M, O**)/dH0(M, A***"1) 

which is precisely the statement of de Rham's theorem. 
EXAMPLE 6. I t is in complex manifolds (a "richer" structure) that 

the sheaf theory is most useful. The simplest example is Dolbeault's 
theorem. Let M be a compact complex manifold. Let APt9 (resp. 
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Bp'q) be the sheaf of germs of exterior differential forms (resp. En­
closed) of type (p, q). Then the sequence of sheaves 

i à" 
0 —> B*>'q —> Ap*q —» Bp'^1 —> 0 

is exact. (The proof that d" is onto is here more difficult.) The sheaf 
Ap'q is fine, while the sheaf BPt0 is the sheaf of germs of holomorphic 
differential forms of degree p. As in Example 3, we derive from the 
exact sequence of cohomology groups the isomorphism 

Hr(M, B*'°) 9Ë H°(M, B*>r)/d"H°(M, A*^1) 

which is the statement of Dolbeault's theorem. 
EXAMPLE 7. COUSIN'S PROBLEM. In a complex manifold M let 5 

be the sheaf of germs of meromorphic functions and 12 the subsheaf of 
germs of holomorphic functions. A section of the quotient sheaf 
S/12 is a system of principal parts. The classical additive Cousin 
problem consists in deciding whether such a system of principal parts 
is that of a global meromorphic function. I t follows from the exact 
sequence of cohomology groups that this Cousin problem always has 
a solution if Hl(M, 12) = 0 . 

EXAMPLE 8. Kodaira-Spencer's classification of complex analytic 
line bundles over a compact Kâhler manifold [82]. The structural 
group is the multiplicative group C* of nonzero complex numbers. If 
12* denotes the sheaf of germs of nonzero holomorphic functions, the 
group of complex line bundles over a complex manifold Mis Hl(M, 12*). 
To determine this group we consider the exact sequence of sheaves 

0 - * Z - ^ o - î > û * - > 0 , 

where j is the injection and e is defined by e(f(z))=exp(2Tif(z)). If 
M is compact, we get the exact sequence 

0 -> Hl(M, Z) i . H\M, 12) 4 Hl(M, 12*) -+ # 2 (M, Z) -» • • • . 

The homomorphism ô associates to every complex line bundle its 
characteristic class. The subgroup of all complex line bundles with 
characteristic class zero is therefore isomorphic to Hl(My Çl)/jHl(M, Z). 
If M is a compact Kâhler manifold, this can be proved to be a com­
plex torus, which is the Picard variety of M. 

This example involves the second cohomology group. 
In Examples 6, 7, 8 we have seen some applications of sheaf theory 

to complex manifolds. More significant applications arise from the 
notion of an analytic coherent sheaf. Let AT be a complex analytic 
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manifold. Let X: Q—»Af be the sheaf of germs of holomorphic func­
tions. A sheaf ty: 5—*M is called analytic, if, for every xÇzM, Sx has 
a module structure over the ring Qx, such that the mapping (ƒ, a)—>fa 
defined for the subset R = {(ƒ, a) \ \(J) =\p(a)}, is a continuous map­
ping of R into S. 

EXAMPLE 9. Let iïq be q copies of the sheaf Q; an element of QJ is 
an ordered set (jfi, • • • , ƒ « ) of g germs of holomorphic functions at #. 
Let 0* act on Î2J according to the formula 

ƒ(ƒ! , - • • ,ƒ , ) = (ƒƒ!,•••,ƒƒ,)• 

Then 12« is an analytic sheaf. 
Let S and 5 ' be two analytic sheaves on M. A homomorphism 

ƒ: S—*S' of sheaves is called analytic if, for every xÇzM, the homo­
morphism fx: SX-*SX' is compatible with the operations of 0X. The 
kernel, the image and the cokernel of ƒ are then all analytic sheaves. 

An analytic sheaf S over M is called coherent if every x(~:M has 
an open neighborhood U such that the induced analytic sheaf S{ U) 
is isomorphic to the cokernel of an analytic homomorphism/: tiq(U) 
—>lîr(C7) (q and r integers). In particular, an analytic sheaf is called 
locally free if every xÇzM has an open neighborhood U such that the 
induced sheaf S(U) is isomorphic to tiq(U) for a certain integer q. 

Stein manifolds. The Stein manifolds (of dimension >0 ) are non-
compact complex manifolds which generalize the domains of holo-
morphy and which possess a sufficiently large number of holomorphic 
functions. Precisely speaking, a Stein manifold is a complex manifold 
with a countable base, satisfying the following conditions: 

(1) To any two points x, yÇîM, xj^y, there exists a holomorphic 
function ƒ in M, such that ƒ(x) 7*f(y). 

(2) To every point xÇzM there exist holomorphic functions in M, 
which form a local coordinate system at x. 

(3) M is holomorphically convex. 
The following fundamental theorem (due to Oka, Cartan, and 

Serre) accounts for most of the properties of Stein manifolds: 
A complex manifold M is a Stein manifold if and only if the follow-

ing two properties hold : 
(A) For any coherent sheaf S over M the module of global sections of 

S over M generates at every point xÇzM the module of local sections. 
(B) For any coherent sheaf S over M, Hq(M, S) = 0 , q^ 1. 
The proof of the direct part of the theorem, i.e., that a Stein 

manifold has the properties (A) and (B), is difficult. The theorem has 
many consequences of which we mention the following: 

(1) The additive Cousin problem always has a solution on a Stein 
manifold. 
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(2) The second Cousin problem, the problem whether a given divi­
sor is the divisor of a meromorphic function, has a solution on a Stein 
manifold if H*(M, Z ) = 0 . 

(3) Every meromorphic function on a Stein manifold is the quo­
tient of two holomorphic functions. 

Compact complex manifolds. When M is compact, Cartan and Serre 
proved that Hq(M, S) is of finite dimension for any analytic coher­
ent sheaf 5. 

Let M be of complex dimension m. Let Wbe a holomorphic vector 
bundle over M and let W* be its dual bundle. Denote by Ar(W) the 
sheaf of germs of holomorphic differential forms of degree r with 
values in W. Serre's duality theorem [122] says that the vector spaces 

H«(M, Ar(W)) and Hm~q(M, Am~r(W*)) 

are in duality and hence have the same dimension. Actually Serre's 
duality theorem is valid for noncompact complex manifolds; we state 
it for compact manifolds for simplicity. 

By introducing an hermitian scalar product in the vector bundle 
W, Kodaira extended Hodge's harmonic forms and proved that 
Hq(M, A* (WO) is isomorphic to the space Hp>q of harmonic forms of 
type (p, q) and with values in W [79]. He, and later Akizuki and 
Nakano, gave sufficient conditions of a differential-geometric nature 
for the vanishing of the cohomology groups Hq(M, AP(W)) (for the 
particular case of a line bundle W) [2], [80 ]. The method is a gen­
eralization of Bochner's method on riemannian manifolds. 

9. Characteristic classes [12], [25], [64], [96]. A systematic the­
ory of characteristic classes begins with the universal bundle theorem. 
It says that with a given compact manifold M as base space the fiber 
bundles with a structural group G (Lie group) are in one-one cor­
respondence with the homotopy classes of mappings of M into a 
classifying space B G ; the latter depends only on G and on the dimen­
sion of M. Over B G there is a universal bundle with the group G and 
the correspondence is established by the condition that the given 
bundle over M is induced by a mapping / : M—+BG, which is defined 
up to a homotopy. With a coefficient ring A the induced homomor-
phism 

f*:H*(BG, A)-*H*(M,A) 

is completely determined by the bundle and is called the character­
istic homomorphism. The image elements of this homomorphism are 
called the characteristic classes. The product bundle is induced by 
the constant mapping, for which all the characteristic classes except 
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1 are zero. Thus the characteristic classes are the first invariants 
which describe the deviation of a fiber bundle from a product bundle. 
From the definition it follows that the characteristic classes have the 
naturality property, i.e., that they are contra variant functors under 
bundle maps. 

The first problem is to find the classifying spaces Bo for given 
groups G and to determine their cohomology rings. For G—U(q), 
Buçq) can be chosen to be the Grassmann manifold G(q, N, C) of all 
linear subspaces of dimension q through the origin of the complex 
Euclidean space Eq+N(C) of dimension q + N, with N sufficiently 
large. Similarly, B0(Q) can be chosen to be the Grassmann manifold 
G(q, N, R) (resp. G(q, N, R)) of all linear subspaces (resp. oriented 
linear subspaces) of dimension q through the origin of the real Eu­
clidean space Eq+N(R) of dimension q + N, with N large. The co­
homology groups of these Grassmann manifolds have been deter­
mined by Ehresmann. In particular, there are elements of 
H2i(G(qy N, C), Z), O ^ i g g , which can, for instance, be completely 
described by the Schubert varieties and which generate the cohom­
ology ring H*(G(q, N, C), Z), such that their images under /* are the 
characteristic classes Ci€:H2i(M, Z) of the Z7(<z)-bundle. Similarly, 
we have, for an 0(g)-bundle or an SO (g)-bundle, the characteristic 
classes W'^H^M, Z2), Orgigg, and pk<EH*k(M, Z), 0 £ * £ [ g / 4 ] , 
called respectively the Stief el-Whitney classes and the Pontrjagin 
classes. A finer analysis of the cohomology of G(q, N9 R) allows a 
definition of W2i+l as an element of H2i+l(M, Z). Also, for an S0(g)-
bundle, the highest dimensional Stief el-Whitney class Wq can be 
defined to be an element of Hq(M, Z), and we will call it the Euler 
class. 

From this definition one can immediately derive necessary condi­
tions on characteristic classes for the reduction of the structural group 
of a fiber bundle. Let G' be a subgroup of G. The universal bundle 
EO'—^BQ* can be considered to be a G-bundle and is hence induced 
by a mapping h: BG^—>BG of the respective classifying spaces. A 
bundle over M induced by a m a p p i n g / : M-^BQ is a G'-bundle, if 
and only if a mapping ƒ' exists such that the following diagram is 
commutative: 

M-^+B0 

BQI 

i.e., f=h of. In terms of the cohomology rings of these spaces this 
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implies the commutativity of the diagram : 

f* 
H*(M,A)< H*(BG, A) 

f'*\ Sh* 

H(B0>, A) 

The latter generally implies relations between the characteristic 
classes of the G-bundle. 

EXAMPLE 1. G = SO(g), G' = S O ( g - l ) . The reduction of a G-bundle 
to a G'-bundle is in this case equivalent to the existence of a cross-
section of the associated bundle of spheres Sq~i = SO(q)/SO(q — 1). 
To define the mapping 

h:G(q- l,N,R)->G(q,N,R) 

geometrically we consider <3(g, N, R) to be the Grassmann manifold 
of oriented g-dimensional linear spaces through the origin of Eq+N(R) 
as defined above and G(q — 1, N, R) to be that of oriented (q — 1)-
dimensional linear spaces through the origin of Eq+N~~1(R) C.Eq+N(R). 
Let x0 be a nonzero vector through the origin of E9+N(R) and per­
pendicular to Eq+N~1(R). To an element of G(g — 1, N, R) its image 
under h is the linear space spanned by it and x0. By studying this 
mapping h one derives easily that a necessary condition for the re­
duction of the G-bundle to a G'-bundle is that the Euler class should 
be zero. (In this case it can be proved that the condition is also 
sufficient.) 

EXAMPLE 2. G = SO(2ra), G' = U(m). For the case of the tangent 
bundle of a manifold the reduction to a G'-bundle is equivalent to 
the existence of an almost complex structure. The mapping 

h: G(m, N, C) -» G(2rn, 2N, R) 

is defined by taking, to an m-dimensional complex vector space of 
Em+N(C), its underlying real vector space. A study of the homo-
morphism on the cohomology rings induced by h gives the conditions 
[139] 

W* = 0, (« odd) 

Z (-l)'fc = E (-1)'** E ch 

where pi are the Pontrjagin classes of M and Ci are the characteristic 
classes of the reduced £/(m)-bundle. If M=S*k, all the Pontrjagin 
classes will be zero and the formula gives c^k = 0. But c2k can be proved 
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to be the Euler class of the tangent bundle, so that we get a contra­
diction. This proves that S4k has no almost complex structure. 

These examples show the importance of finding relations between 
the characteristic classes of a G-bundle and those of its reduced G'-
bundle, G'CG. 

Further necessary conditions are found by considering the co-
homology operations (Bockstein's operations, Steenrod's cohomology 
operations, Pontrjagin-Thomas operations, etc.). By using the for 
mulas expressing pl

vCj as a polynomial of Ci, • • • , cm {p\ is the for-
rod reduced power operation), Borel and Serre proved that S2m is 
not almost complex for w ^ 4 [26]. 

Operations on vector bundles. Operations on fibers which commute 
with the action of the structural group can be extended to operations 
on bundles. For bundles with the group GL(g, R) or GL(g, C) (real 
or complex vector bundles), two such operations are particularly im­
portant: (1) Whitney sum; (2) tensor product. (There are other 
operations.) To define them consider GL(g) (over the real or complex 
field) to be the group of all qXq nonsingular matrices. Define 

w: GL(?1) X GL(q2) -> GLfo + q2) 

by 

/At 0 \ 
w(Ah A2) = ( ^ A ), At G GLfo), i = 1, 2. 

\ 0 AJ 

If over M there are GL(#i) and GL(g2) bundles which, relative to a 
covering { [7, V, • • • }, are given by the transition functions 7^7, 
y'uy, their Whitney sum has the transition functions w(y'uy, 7^7). 
Similarly, the tensor product of matrices defines a mapping 

GL(8l) X GL(ç2) -> GL(giÎ2), 

from which one gets the tensor product of vector bundles. 
I t is possible to express the characteristic classes of a Whitney sum 

(resp. tensor product) in terms of those of the summands (resp. fac­
tors). The relations are particularly simple for complex vector bun­
dles. For a GL(g, C)-bundle W let 

(40) c(W) = 1 + ci(W) + • • • + cq(W). 

Then 

(41) c(Wi 0 W2) = c(Wi)c(Wi), 

where Wi^W2 is the Whitney sum. This relation (41) is usually 
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called the Whitney duality theorem. Write 

(42) c{W) = I I (1 + 7ÂW)). 

Then the characteristic classes of a tensor product are given by the 
formula 

(43) c(Wt <g> W2) = I I (1 + 7i(Wi) + y,<W2)). 

Characteristic classes and curvature. The characteristic classes with 
real coefficients are closely related to the curvature of a connection. 
Such relations include some of the classical results on global differ­
ential geometry. Let E—^M be a principal fiber bundle with a struc­
tural group which is compact and connected. Consider a real valued 
multilinear function F{X\1 • • • , X8), with arguments Xi in the Lie 
algebra L(G), such tha t it satisfies the conditions: (1) I t is symmetric 
in any two arguments; (2) I t is invariant under the action of the 
adjoint group, i.e., 

(44) F(ad(7)X1 , • • • , ad(7)X,) = F(Xh • • • , X8), y&G. 

Suppose there be a connection in the bundle, with the curvature form 
<ï>, which is L(G)-valued. To the arguments of F we substitute $ , 
putting 

(45) F(#) = F($ , • • • , * ) . 

Then F{<$>) is a closed exterior differential form of degree 2s in M. 
A theorem of Weil states that the cohomology class determined by 
F($) is independent of the choice of the connection and depends only 
on the bundle [40 ]. In this way one can identify such functions F 
(which depends only on the group G) with the characteristic classes 
of the bundle. 

EXAMPLE 3. G= U(q). L(U(q)) is the space of all complex-valued 
qXq skew-hermitian matrices. Let ($^) = — '(*»,-) be the curvature 
form, and let 

(46) det Uq + QA = 1 + $ ! + • • • + *fl> 

where $k is an exterior differential form of degree 2k in M. The co­
homology class determined by <£& is the characteristic class c*. 

EXAMPLE 4. G = SO(2g). The integrand in the Gauss-Bonnet for­
mula (2) is the Euler class. 

Divisibility. For a GL(g, C)-bundle the characteristic class Ck is an 
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element of H2k(M, Z). If M is oriented and of even dimension n~2m, 
a polynomial of the form 

(47) 22 otki-.-kaCki ' ' ' Ck, 

with the integer coefficients a^...*, is an element of H2m{M, Z) and 
has an integral value over the fundamental homology class of M. 
Such an integer is called a characteristic number. An important divi­
sibility property is given by the following theorem of Bott [28 ] : The 
characteristic number cn of any complex vector bundle over the sphere 
S2n is divisible by (n — 1) !. This theorem has many geometrical appli­
cations. For instance, if the vector bundle has the tangent bundle of 
5*2n as the underlying real vector bundle, we would have cn — 2 
= Euler-Poincaré characteristic of S2n. This is imossible for w ^ 4 , 
which gives a new proof of the Borel-Serre theorem that S2n has no 
almost complex structure for n ^ 4. 

Generally speaking, the characteristic classes Ck> being cohomology 
classes with integer coefficients, seem to characterize a complex vec­
tor bundle quite strongly. A theorem of Peterson says that if M has 
in dimension 2k only torsion coefficients which are relatively prime to 
(k — 1) !, then a complex vector bundle of sufficiently large dimension 
over M is a product bundle if all its characteristic classes are zero 
[110]. 

10. Riemann-Roch, Hirzebruch, Grothendieck, and Atiyah-Singer 
Theorems [ l l ] , [13], [27], [64], [108]. The classical Riemann-Roch 
theorem for compact Riemann surfaces has received important de­
velopments through the recent works of Hirzebruch, Grothendieck, 
and Atiyah-Singer. Because of their relations with different fields of 
mathematics we will follow the historical development. 

Let M be a compact Riemann surface and ƒ a meromorphic func­
tion over M. At a point p with the local coordinate z(z(p) = 0) we have 

(48) ƒ = anz
n + an+izn+l + • • • , an ^ 0. 

The integer n(p) is independent of the choice of the local coordinate 
and is called the order of ƒ at p. The point p is a pole if n(p) <0 . We 
call 

(49) div(/) = £ n(p)p 
V 

the divisor of the meromorphic function ƒ. The sum is a finite sum, 
because the zeros and poles are finite in number. 
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Generally a finite sum 

(50) D = E f»(p)p, m(p) E Z, 
p 

is called a divisor. The integer d(D) = ^m(p) is called its degree. 
All the divisors form an additive group. The divisor D is said to be 
positive ( è 0 ) , if all tn(p)^0. 

The Riemann-Roch problem is to study the dimension of the com­
plex vector space of all meromorphic f unctions ƒ such that div(/) +D 
è 0, for a given divisor D. The latter condition means that ƒ has a pole 
of order ^ +m(p) if m(p)>0, and a zero of order à —m(p) if m(p) 
< 0 , and is regular at all other points. We denote the dimension of the 
complex vector space in question by 1(D), and the classical Riemann-
Roch theorem is given by the formula 

(51) 1(D) = d(D) - g + i + 1, 

where g is the genus of M and i à 0 is the index of specialty of D. 
The index of specialty i is defined as follows : First we say that two 

divisors Di, Z>2 are linearly equivalent, if there exists a meromorphic 
function ƒ such tha t Di — D2~div(f). Since div(jfg) = div( / )+div(g) , 
div^""1) = — div(/) , linear equivalence is an equivalence relation. Let 
o) = b(z)dz be a meromorphic differential form. Locally we can write 

b(z) = bnz
n + bn+1z

n+l + • • • , bn 7* 0. 

Then n(p) is called the order of co at p} and we define the divisor of 
co to be div(co) = ^n(p)p. The linear equivalence class of div(co), to 
be denoted by K, is independent of œ and depends only on M, because 
the ratio of two meromorphic differential forms is a meromorphic 
function. K is called the canonical divisor class. The index of specialty 
i is by definition 

(52) i = dim H°(M, ti(K - D)). 

(For a divisor D, ti(D) is the sheaf of germs of mermorphic functions 
ƒ such that d i v ( / ) + J 9 ^ 0 . ) By Serre's duality theorem we have the 
isomorphism 

(53) H°(M, Q(K - D)) ^ E\M, Q(Z>)). 

Then the Riemann-Roch theorem can be written 

(54) dim H°(M, Q(D)) - dim El(M, ti(D)) = d - g + 1. 

This formula was generalized by Hirzebruch to higher dimensions 
in the following way : Let M be a compact complex manifold of com-
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plex dimension m, and W an analytic vector bundle with the struc­
tural group GL(g, C). Wis called a line bundle if q = 1. (A line bundle is 
essentially the differential-geometric version of a divisor. For a divi­
sor is given in a coordinate neighborhood U by an equation <f>u = 0, 
and it defines a line bundle with the transition functions guv^öu/^v-
Conversely, it was proved by Kodaira and Spencer that every line 
bundle over a nonsingular algebraic variety is defined by a divisor.) 
Let Q,(W) be the sheaf of germs of holomorphic sections of W, and let 

(55) x(M,W)= 2 (-I)'dim H^M, Q(W)). 

Let ciy 1 SiSwi, be the characteristic classes of the tangent bundle of 
M and dj> 1 ^jSq, those of the bundle W. Write 

i + E ^ = n a + T.), 
(56) i + z dj = n a+*/>, 
and put 

(57) T(M, W) = (eh + - • - + e*«) Ü ^ 7 :> M), 
\ i l - e x p ( - Y i ) / 

where the right-hand side denotes the value of the cohomology class 
in question over the fundamental class of M, the value being zero 
for every summand of dimension y^lm. Hirzebruch's formula says 
that , for nonsingular algebraic varieties, we have 

(58) X(M, W) = T(M, W). 

If W is not involved, then 

(59) X(M) = T(M). 

x(M) is called the arithmetic genus and T(M) the Todd genus. If 
m — \ and Wis a line bundle defined by a divisor Df then di-M = d(D), 
Ci-M=2—2g, and we get immediately the classical Riemann-Roch 
theorem from Hirzebruch's formula. Hirzebruch's proof of his for­
mula makes use of Thorn's theory of "cobordism." 

Grothendeick formulates the Riemann-Roch problem as a problem 
on mappings? Let F(M) be the free abelian group generated by the 
set of all isomorphy classes of complex vector bundles over M. M 
need not be connected, in which case it is not assumed that the bun­
dle has the same fiber dimension over different components of M. An 
element x^F(M) is thus a formal finite linear combination 

(60) x = E fiiWi, fii G Z, Wi = complex vector bundle. 
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Let 

0 -> W' -> W -> JF" -> 0 

be a short exact sequence of complex vector bundles. Let K(M) be 
the quotient group of F(M) modulo the subgroup generated by 
W— W' — W" for all short exact sequences. (In other words, we con­
sider all extensions of complex vector bundles to be trivial. This is a 
natural idea, because by the Whitney duality theorem all the char­
acteristic classes of W—W' — W" are zero.) With the Whitney sum 
as addition and the tensor product as multiplication, K{M) becomes 
a ring, called the Grothendieck ring. 

Without danger of confusion, if IF is a complex vector bundle, we 
will denote also by W the element it determines in K(M). We define 
the character 

(61) ch(PF) = £ «* G H*(M, Q), 

where H*{M, Q) is the cohomology ring of M with coefficients in the 
rational number field Q. Then 

(62) ch: K(M)->H*(M, Q) 

is a ring homomorphism. 
Generalizing the Todd genus we define the Todd cohomology class 

(63) t(M) = I I —, G B*(M9 Q). 
i 1 — e x p ( - Y i ) 

Let ƒ : M—>N be a continuous mapping, where M, N are compact 
oriented manifolds of real dimensions /x, v respectively. The diagram 

Hp(M7Q)ànp(NiQ) 

î T 
H»-*{M, Q) -^ H*-P{N, Q) 

where the first row is the induced linear mapping on the homology 
vector spaces and the vertical rows are isomorphisms established by 
Poincaré's duality, defines a linear mapping of the last row, which we 
also denote by /* . 

Now let M, N be nonsingular algebraic varieties, and ƒ : M—>N be 
a holomorphic mapping. An additive homomorphism ƒ, : K(M)—>K(N) 
can be defined as follows: Let W(EK(M). To every open set VC.N 
assign the group H9(f~1(V)} Q(W)). This is the presheaf of a sheaf 
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2?«Q. Define f\(W)= X * ( — 1)^*0. For algebraic variety, the alge­
braic coherent sheaves and complex vector bundles can be identified. 
Hence f{(W)ÇzK(N). 

Grothendieck's theorem is then the formula: 

(64) f*(ch(W)t(M)) = chiftWXN). 

Frow this Hirzebruch's formula follows by taking N to be a point. 
Another important consequence of the theorem is that the Todd 
genus of a nonsingular algebraic variety is a birational invariant. 

A remark could be made as to the reason of the form of the factors 
in the Todd class. This form automatically appears when one con­
siders the simple case of a hypersurface in projective space. From 
this one extends it to algebraic varieties which are complete inter­
sections of hypersurfaces and then to the most general algebraic 
varieties. 

Atiyah and Hirzebruch generalized a weakened version of Grothen­
dieck's theorem to real manifolds. I t starts with the observation that 
the Todd class can be written 

(65) t(M) = exp(a/2)a(M), 

where 

(66) a(M) = II ~ G B*(M, Q), 
sinh — 

2 

to be called the A -class, depends on the Pontrj agin classes of M only. 
Since Ci= W2, mod 2, for the Todd class to be defined the real mani­
fold must have the property that its Stiefel-Whitney class W2 is the 
reduction mod 2 of an integral class. A necessary and sufficient con­
dition for this is that Wz = 0. (Note that Wz is a class with integer 
coefficients.) 

Now let M be a real manifold with W* = 0. Let d<E.H2(M, Z) be 
such that its reduction mod 2 is W2. We call 

(67) R(M) = ch(K(M)) exv(d/2)a(M) G H*(M, Q) 

the Riemann-Roch group of M. I t is independent of the choice of 
d and is isomorphic to ch(K(M)) as groups. A weakened version of 
Grothendieck's theorem states that 

(68) MR(M)) C R(N), 
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if My N are nonsingular algebraic varieties and ƒ : M—>N is a holo-
morphic mapping. The generalization by Atiyah-Hirzebruch is the 
following theorem. 

Let M and N be compact oriented differentiable manifolds with 
W*{M) = W*(N) = 0 and dim A f - d i m N=0, mod 2. Letf: M->N be 
a continuous mapping. Then f*(R(M)) QR(N). 

The theorem has various applications. We mention the following: 
(1) The Todd genus of a compact almost complex manifold is an 

integer (Milnor). 
(2) If W2(M) = 0, then the ^4-genus is an integer. 
(3) From their theorem Atiyah and Hirzebruch derived sharp 

lower bounds of the dimension of the sphere into which the real and 
complex projective spaces can be differentiably imbedded. 

Atiyah and Singer considered elliptic differential operators on a 
compact (orientable) real differentiable manifold and obtained an 
important theorem which contains the Riemann-Roch-Hirzebruch 
formula (58) as a special case. To an elliptic differential operator D 
(from the sections of one complex vector bundle to those of another) 
one associates, through the character defined in (61), a cohomological 
invariant ch(D)Ç.H*(M, ()), the character of D. Moreover, the 
definition of the Todd class in (63) can be extended to a real manifold 
by simply taking the complexification of the tangent bundle of M. I t 
will then be expressible as a polynomial of the Pontrj agin classes of 
M. The rational number 

(69) it(D) = (ch(Z))/(M), M), 

where the right-hand side denotes the pairing of a cohomology class 
and the fundamental class Mt is called the topological index of the 
elliptic operator D. 

On the other hand, D being an elliptic operator on a compact 
manifold, the spaces Ker(D) (i.e., the null space) and Coker (D) 
are both finite dimensional, and we define the analytical index of D 
to be the integer 

(70) ia(D) = dim ker D — dim coker D. 

The Atiyah-Singer theorem says that it{D) =ia(D). 
Among the consequences of the Atiyah-Singer theorem are: 
(1) The Gauss-Bonnet formula (2), when applied to the operator 

d+ô, where S is the codifferential defined by ô= ± * d *. 
(2) The Hirzebruch index theorem, expressing the index r(M) in 

terms of the Pontrjagin classes of M (cf. §5). 
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(3) Extension of the Riemann-Roch-Hirzebruch formula (58) to 
an arbitrary compact complex manifold. 

I t will be of great importance to find a theorem on proper maps of 
compact complex manifolds, which will imply as consequences both 
the Grothendieck and the Atiyah-Singer theorems. 

11. Holomorphic mappings of complex analytic manifolds [ l ] , 
[45], [137]. A holomorphic mapping/ : V—>M of a complex manifold 
V into a complex manifold M is a continuous mapping which is locally 
defined by expressing the local coordinates of the image point as 
holomorphic functions of those of the original point. 

I. Compact manifolds. (All manifolds in this part of the discussion 
are compact.) 

The condition of a holomorphic mapping is so strong that it is 
generally not clear whether, for given manifolds V, M, such a map­
ping exists, which is not a constant. In fact, it is well known that if 
M is a complex torus and V satisfies the condition H1( V, R) = 0, then 
every holomorphic mapping of V into M is constant. Similarly, let 
hro(V) (resp. hro(M)) be the dimension of the vector space of holo­
morphic exterior differential forms of type (r, 0) of V (resp. M). If 
dim F = d i m M and if the Jacobian of ƒ is not identically zero, then 
hro(V) ^hro(M). It follows that a nonconstant holomorphic mapping 
ƒ exists from a Riemann surface ( = one-dimensional complex mani­
fold) V into a Riemann surface M only when hio(V) ^hio(M)y where 
the two quantities are now the genera of V and M respectively. 

The celebrated theorems of Chow and Kodaira [58], [81 ] can be 
interpreted as assertions on holomorphic mappings. In fact, Chow's 
theorem implies that if V is compact, the image set ƒ( V) of a holo­
morphic m a p p i n g / : V-*Pm ( = projective space of dimension m) is 
an algebraic variety. Kodaira's theorem says that if F is a Kâhler 
manifold whose fundamental two-form has rational periods, then 
there exists a holomorphic mapping/ : V—>Pm which is one-to-one. 

Suppose that a holomorphic mapping ƒ: V^M exists. An im­
portant problem is to find relations between the invariants (such as 
the characteristic numbers) of V, M and quantities which depend 
on the mapping (for instance, the degree when dim F = d i m M). A 
classical relation of this nature is the Riemann-Hurwitz formula: Let 
V, M be Riemann surfaces with Euler characteristics x(^0> x(^f) 
respectively. Let ƒ : V-+M be a holomorphic mapping of degree d. 
Then we have 

(69) x(V) + w = dx(M), 



1966] THE GEOMETRY OF G-STRUCTURES 207 

where w is the index of ramification, i.e., the sum of the orders of the 
points of ramification. 

Another set of relations of this nature consists of the Plücker 
formulas for an algebraic curve. Let an algebraic curve be defined by 
a holomorphic mapping ƒ : V—>Pm, where F is a Riemann surface. 
Suppose that the algebraic curve is nondegenerate, i.e., that the image 
f(V) does not belong to a linear space of dimension ^ m — 1 . To this 
curve is defined the pih associated curve fp : V—»Gr(ra, p),0^pSm — 1, 
formed by the osculating projective spaces of dimension p> where 
Gr(m, p) is the Grassmann manifold of all ^-dimensional projective 
spaces in Pm (thus Gr(m, 0) = P m ; notice the relation with the Grass-
man manifolds in §9 and the difference of notations). fp(V) defines a 
cycle in Gr(ra, p), which is homologous to a positive integral multi­
ple vp of the fundamental two-cycle of Gr(ra, p). The integer vv>0 
is called the order of rank p of our algebraic curve. Geometrically it 
is the number of points of the curve at which the osculating spaces 
of dimension p meet a generic linear space of dimension m—p — 1 of 
Pm. A stationary point of order p is one at which the pth associated 
curve has a tangent with a contact of higher order. The stationary 
points are isolated and a positive index can be associated to each of 
them. Let wp be the sum of indices at the stationary points of order 
p. Then Plücker's formulas are 

(70) - w , - vp-x + 2vp - vp+1 = x(V), Ogpgm-1. 

Here the right-hand side is an invariant of V, while the left-hand side 
involves quantities which depend on the mapping. The special cases 
of the Plücker formula for m = 1 and the Riemann-Hurwitz formula 
for M = Pi give the same relation, as to be expected. 

For nonsingular algebraic varieties a much more profound relation 
between invariants of manifolds and quantities depending on a holo­
morphic mapping is given by Grothendieck's Riemann-Roch theorem 
(cf. §10). Here one utilizes the classification of singularities by Thorn. 
Applying the results of Grothendieck and Thorn, I. R. Porteous [ i l l ] 
derived relations between the characteristic classes for the following 
cases: (a) dilatations; (b) ramified coverings with singularities of a 
relatively simple type. 

If V and M are of the same dimension, an important invariant of 
the mapping ƒ is its degree d(J) ^ 0 . I t is equal to the number n(a) of 
times that any point a £ A f is covered by the image of the mapping. 
Define an hermitian metric on M such that the total volume of M is 
1. Then we have 

(71) d(f) = n(a) = vol f(V). 
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II . Equidistribution. The most important case of a holomorphic 
mapping ƒ : V—+M is when V is the euclidean line E\ and M is the 
projective line Pu in which case the mapping is nothing else but a 
meromorphic function. The famous theorem of Picard says that if ƒ 
is not a constant, the set Pi-f(Ei) cannot contain more than two 
points. Much sharper results generalizing Picard's theorem were ob­
tained by R. Nevanlinna in the form of his defect relations. The gen­
eral aim is to ascertain, whenever it is true, that the image set is large 
and that, in a suitable sense it is "equidistributed." 

As with meromorphic functions, the case which will yield interest­
ing results is when V is noncompact and M is compact. This assump­
tion we will make throughout Part II except in the last section. The 
basic idea is the realization that results which are true for compact V 
can be extended to those F, which are "complex analytically large" 
(such as a parabolic open Riemann surface or a high-dimensional do­
main with a pseudo-concave exhaustion). The manifold V is to be 
exhausted by a sequence of compact polyhedra with boundaries, so 
that an intermediate step is to study the mapping ƒ : D—*M where 
D is a compact polyhedron with boundary. Generalizations of the 
results of Part I to this case are the necessary prerequisites. What 
remains consists in the estimate and the study of the asymptotic be­
havior of the boundary integrals, which are usually delicate consider­
ations. 

So far the deepest result in this direction is a theorem of Ahlfors 
on holomorphic curves in projective space, whose study was initiated 
by H. and J. Weyl. By a holomorphic curve is meant a holomorphic 
mapping ƒ : V—*Pm (our holomorphic curve is the same as a mero­
morphic curve in Weyl's terminology). I t is said to be nondegenerate, 
if ƒ( V) does not belong to a linear subspace of P w . Ahlfors' theorem, in 
a slightly generalized form, is the following: 

Let ƒ : V—>Pm be a nondegenerate holomorphic curve such that V can 
be compactified as a Riemann surface by the addition of a finite number 
of points. Given 

/m+ 1\ 

linear spaces of dimension m—p — 1 in general position, one of them 
must meet an osculating space of dimension p of the curve. 

Considering the beauty of the theorem, it is natural to ask whether 
the image space Pm can be replaced by a more general space, such as 
the Grassmann manifold Gr(w, p) of all ^-dimensional (projective) 
linear subspaces in Pm (0<p<m). By imbedding Gr(m, p) in PNf 

with 



i966j THE GEOMETRY OF G-STRUCTURES 209 

/m+ 1\ 
N=\ ) ~ *> 

\p+U 
one derives from the Ahlfors' theorem results of the Picard type on 
the relative position of a holomorphic curve in Gr(m, p) with respect 
to a finite number of prime divisors in general position on Gr(ra, p). 
However the bound so obtained is generally not sharp. To put our­
selves in a specific position we would like to ask the following ques­
tion: Suppose / : C—>Gr(2?n — 1, ra — l) be a holomorphic curve. To 
each f £ C let / (f) be spanned by m points whose homogeneous co­
ordinate vectors are Z\9 • • • , Zm. The curve is called nondegenerate, 
if the determinant 

dZ\ dZm \ 

it ' df ) 

does not vanish identically. Is it true that, given 2m + 1 linear sub-
spaces of dimension rn — 1 of P2w-i in general position, one of them 
will intersect/(f) for a certain f £ C ? The affirmative answer to this 
for m = 1 is the classical Picard theorem. 

When dim F > 1 , value distribution in the strict sense fails com­
pletely. In fact, the classical example of Fatou and Bieberbach is a 
holomorphic mapping / : JE2—>E2, such that the Jacobian determinant 
is identically equal to one, while E^—fiE^) contains an open subset. 
The problem should thus be looked at from a more general viewpoint. 

When dim V = n, and M = Pm, n^my the first main theorem can be 
generalized, as follows: Let A be a linear subspace of dimension rn — n 
in Pm. Let AL be the linear subspace of dimension n — l which is 
orthogonal to A (relative to the standard hermitian metric in Pm). 
To Z^Pm—Ay the space spanned by Z and A meets i i i n a unique 
point. This defines a mapping xf/: Pm — A~^AL. Denote by s(Z, A) 
the distance between Z and A. Let £2 be the fundamental two-form 
of Pm, so normalized that /p m !2 m =l . Let j : A^—*>Pm be the identity 
mapping, and let $ = (j o \f/)*ti. Then 

(72) A = —Xd' - O log a n 5(Z, A) A ( Z ^ A U ^ 1 

is a real differential form of degree 2n — \ in Pm — A. If A is generic, 
ƒ(£>) cuts A in a finite number w(^4, Z>) of points, and we have the 
formula 

(73) n(A, D) - v(D) = f A, 
J f(dD) 

* 



210 S. S. CHERN [March 

provided that f~x(A)C\dD = 0 (v(D) is the volume of f(D) and is 
equal to ƒ/(D)On). This formula, to be called the first main theorem, is 
due to H. Levine [92]. 

I t turns out that this first main theorem leads to a geometrical con­
clusion, in the special case that V is the coordinate space of n dimen­
sions, with the coordinates zi, • • • , zn. We exhaust V by the balls 
Dr defined by ziz±+ • • • +znzn^r2. Relative to the parameter r the 
first main theorem can be integrated. Let 

(74) vk(r) = f jf*flT* A 0*, O^k^n, Q0 = — Z * i A dzh 
J Dr 2 izlzn 

By applying integral geometry to the integrated form of the first 
main theorem, we obtain the following theorem [46]: 

Let ƒ : V—>Pm be a holomorphic mapping of the euclidean space V of 
dimension n into Pm. Assume that the following conditions are fulfilled, 
as r—» oo : 

(1) The order function 

flo(0 dt T(r) = fT 
J2«-1 

(2) ('(?{(!)#)/*** = o(T(r)). 

Then the set of linear spaces of dimension m—n which do not meet ƒ( V) 
is of measure zero in the Grassmann manifold Gr(w, m—n) of linear 
sub spaces of dimension m—n in Pm, m*£n. 

A special but important case of holomorphic mappings is tha t of 
the holomorphic sections of a holomorphic vector bundle. The study 
of the zeroes of a section or of points a t which several sections are 
linearly dependent is closely related to the value distribution problem 
and is in many cases equivalent to it. The problem is to describe 
those properties which depend on the bundle only and are indepen­
dent of the sections, for the case that the base manifold is not neces­
sarily compact. The algebraic aspect was recently studied by Bott 
and Chern [30 ], namely the properties of the differential forms in the 
vector bundle relative to the operator D = id'd". This could be re­
garded as a refinement of the theory of characteristic classes for the 
complex analytic case. From it an equidistribution theorem was de­
rived, but much remains to be done. 

12. Isometric mappings of Riemannian manifolds. A mapping of a 
riemannian manifold into another is called an isometry, if it preserves 
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the lengths of the tangent vectors. If an isometry is present, the basic 
local invariant is the second fundamental form, which is a quadratic 
differential form, with value in the normal bundle. The second funda­
mental form is related to the curvature forms of both riemannian 
manifolds by the (generalized) Gauss equations, but until now the 
exact relationship (a purely algebraic problem) has not been suffi­
ciently clarified. 

The problem of isometric mappings is almost as old as differential 
geometry itself, beginning with the theory of curves and surfaces. If 
V and M are real analytic riemannian manifolds of dimensions n and 
tn = n(n + l)/2 respectively, then the theorem of Janet-Cartan says 
that there is locally an isometric mapping of V into M [35]. Without 
analyticity the same result has only been proved for n = 2, and in fact 
only under the additional assumption that the gaussian curvature of 
V keeps a constant sign in a neighborhood [61]. For n>2 the gen­
eralization of the Janet-Cartan theorem to C°°-data seems to be diffi­
cult, even allowing additional conditions in the form of inequalities 
between the curvatures. 

Perhaps the first global isometric imbedding theorem is the solu­
tion of the Weyl problem, which is to find an isometric imbedding of 
a two-dimensional compact riemannian manifold with positive gaus­
sian curvature into the three-dimensional euclidean space [138]. 
Weyl's work was completed by H. Lewy, L. Nirenberg, A. D. Alex-
androw, and A. V. Pogorelov [3], [49], [91 ], [104]. A bold isometric 
imbedding theorem of an arbitrary riemannian manifold into an 
euclidean space was proved by J. Nash. For a C^-riemannian mani­
fold V of dimension n Nash's theorem, improved by N. H. Kuiper, 
says tha t V can be CMsometrically imbedded in an euclidean space 
of dimension 2n+1 [85], [99]. Among other results Kuiper also found 
an isometric imbedding of the hyberbolic plane as a closed subset in 
euclidean three-space. However, such imbeddings could be patho­
logical. Nash's imbedding theorem is still true, if more smoothness is 
imposed, but the dimension of the receiving euclidean space will have 
to be higher and the proof is more difficult [89], [97], [lOO]. For 
example, Nash proved tha t a compact two-dimensional riemannian 
manifold can be isometrically imbedded in an euclidean space of 
dimension 17. Whether this bound can be improved should be a very 
interesting question in differential geometry. 

If a riemannian manifold can be isometrically imbedded in an 
euclidean space Em of dimension m there arises the question as to 
how far it is determined, modulo the isometries in Em. In the general 
case practically nothing is known. A classical theorem of Cohn-
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Vossen, complemented by a remark of K. Voss, says that a closed 
convex surface (i.e., Gaussian curvature ^ 0 ) in an euclidean three-
space Ez is completely determined by its metric, modulo the isom-
etriesof Ez [131 ]. 

To restrict the submanifolds under consideration and thus to make 
a Cohn-Vossen type uniqueness theorem more plausible, the notion 
of total absolute curvature seems to deserve attention. This is the 
volume of the image of the unit normal bundle of the submanifold 
under the Gauss mapping, so normalized that the volume of the unit 
sphere in Em is 1. Chern and Lashof proved that a compact immersed 
submanifold in Em has total curvature ^ 2 , and if it is equal to 2, it 
is a convex hypersurface imbedded in an euclidean space of one di­
mension higher [44]. For a given compact manifold the minimum of 
the total curvatures for all possible immersions is a differential topo­
logical invariant and is an integer. The so-called tight immersions, 
i.e., those for which the minimum total curvature is attained, can 
thus be considered as generalizations of convex hypersurfaces. I t is 
not known whether there exist two tightly immersed compact sub­
manifolds, which are isometric but which do not differ by an isometry 
of Em. 

A. D. Alexandrow proved that two tightly imbedded analytic com­
pact surfaces of genus one in euclidean three-space Ez differ by an 
isometry of Ez, if they are isometric. To remove the assumption of 
analyticity Nirenberg has to put in some additional hypotheses [105], 
so that the question whether the analyticity assumption in Alexan-
drow's theorem could be removed remains unsettled. On the other 
hand, the notion of a tight imbedding can be easily extended to 
polyhedral submanifolds, and T. Banchoff gave examples of two 
polyhedral surfaces of genus one in euclidean three-space Ez such that 
their corresponding faces are congruent, but they do not differ by a 
motion or a reflection of Ez [14]. 

An important class of submanifolds in Em consists of the minimal 
submanifolds. This is an isometric immersion V-+Em such that the 
coordinate functions are harmonic functions on V. Equivalently, we 
can also say that the trace vector of the second fundamental form is 
identically zero or that it solves locally the Plateau problem, being 
the submanifold of the least area with a given boundary. A complete 
minimal submanifold in Em is never compact. I t is, however, not 
known whether it is unbounded. So far the study has been mostly 
confined to minimal surfaces (i.e., dimension two); the reason lies 
in the intimate relationship of this case to complex function theory. 
In fact, the surface, with a fixed orientation, has an underlying com-
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plex structure, and the Grassmann manifold of all oriented planes 
through a fixed point 0 of Em is a homogeneous complex manifold. A 
surface in Em is minimal, if and only if the Gauss mapping, which 
sends a point p of the surface to the plane through 0 parallel to the 
tangent plane at p, is anti-holomorphic. An important problem is to 
determine the type of the surface V (in the sense of complex function 
theory) from the properties of the Gauss mapping. A classical theorem 
of S. Bernstein, as generalized by R. Osserman, can be interpreted 
as a uniqueness theorem. I t says that a complete minimal surface in 
Ez is a plane, if its image under the Gauss mapping omits an open sub­
set of the Grassmann manifold (which in this case is the unit sphere). 
This theorem has a generalization to minimal surfaces in Em [47], 
[107]. 

13. General theory of G-structures [32], [34], [37], [77], [126]. 
The general theory of G-structures is concerned primarily with a local 
problem, i e., the equivalence problem formulated in §4. The first 
local invariant is the first-order structure function, whose definition 
is a little complicated and we will not give it here. A G-structure is 
called locally flat, if it is equivalent to one given by the differentials 
of the local coordinates (Ou^du1 in the notation of §4). The structure 
function is zero for a locally flat structure. In some cases the converse 
of this statement is true. For an almost complex structure the vanish­
ing of the structure function is equivalent to the fulfillment of the 
integrability conditions. Tha t this implies local flatness is an easy 
theorem in the real analytic case. Without analyticity this is a theo­
rem of Newlander and Nirenberg, whose proof involves delicate con­
siderations in partial differential equations [lOl], [103]. 

Given a G-structure, its local automorphisms may depend on a 
finite number of constants or on arbitrary functions. The G-structure 
is then said respectively to be of finite or infinite type. For an irre­
ducible linear group G, Kobayashi and Nagano found a necessary and 
sufficient condition for a G-structure to be of finite type in terms of 
their theory of filtered Lie algebras [77]. The case of infinite type 
leads to structures defined by infinite pseudo-groups. In this respect 
Cartan's determination of the simple infinite pseudo-groups (over the 
complex field) has not been completely verified, and its clarification 
should be one of the outstanding problems in the theory of infinite 
pseudo-groups. 

Within this framework is a problem studied by Weyl and Cartan 
on the so-called Pythagorasian nature of metric. This is to find those 
G such that a unique affine connection exists, which preserves the 
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admissible frames and which has a given torsion form. For dimensions 
è 3 this implies that G is the orthogonal group (of arbitrary signa­
ture). The problem has recently been studied and extended by Klin-
genberg and Kobayashi-Nagano [70 ], [76]. 
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