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In 1918 and 1919 Daniell's papers on what is now called the 
Daniell integral appeared. As an application he constructed the most 
general finite measure of Borel sets in Euclidean space of countable 
dimensionality. In 1933 Kolmogorov, in his formalization of proba­
bility as measure theory, rediscovered the Daniell result in construct­
ing measures on Euclidean space of arbitrary dimensionality. After 
1933 probability to a mathematician was no longer merely an extra-
mathematical source of interesting problems in analysis with colorful 
interpretations, but was now a normal part of mathematics whose 
historical development was commemorated by the use of peculiar 
names (random variable, expectation, . . . ) f or commonplace mathe­
matical concepts (measurable function, integral, . , . ). 

Wiener was an exception in his probability work in that he almost 
never used the classical nomenclature, and in fact usually even 
avoided using the standard classical results and conventions, some of 
which would have simplified and clarified his work. He came into 
probability from analysis and made no concession. If his work had 
been less forbiddingly formal, it might have had even more influence. 

In a series of papers beginning with [12]* Wiener undertook a 
mathematical analysis of Brownian motion. It was accepted that 
Brownian paths were governed by probabilistic laws, and it seemed 
plausible that the paths were continuous. The problem was to con­
struct and analyze a rigorous mathematical model. More than a 
decade before Kolmogorov's formalization of probability Wiener con­
structed a mathematical model of Brownian motion in which the 
basic probabilities were the values of a measure defined on subsets 
of a space of continuous functions. This measure has since been com­
monly called "Wiener measure. " Fixing an origin in time and a direc­
tion in space, let x(t) be the component in the specified direction of 
the displacement by time t of a Brownian particle. Then x(0) = 0. 
For technical reasons it was advantageous to restrict t to a compact 
interval. Thus Wiener was led to consider the space C of continuous 
functions on [0, 1 ], vanishing at 0, and to define a measure of subsets 
of C (based on the Daniell integral). The probability of any property 
of the displacement function was associated with the measure of the 
subset of C having this property. The Wiener measure of subsets of C 

* The bold-faced numbers in brackets refer to the numbered references in the 
Bibliography of Norbert Wiener. 
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has the following properties: (Here if co is a member of C, X(t, co) 
is the value of co at t.) 

(a) The measure of C is 1. 
(b) The function X(t, •) is a random variable (measurable func­

tion) on C and X{h, •) — X(h, •) has a distribution which is Gaussian 
with mean 0 and mean square value a \ h—h |, where a is an assigned 
strictly positive parameter. 

(c) If U < • • • < tn, then X(h, •) - X(h9 • ) » • • - . X(t*> •) 
— X(Jn_i, •) are mutually independent. 

In view of the definition of C the values of t here are restricted to the 
interval [0, l ] but a simple transformation then yields a measure on 
the space of continuous functions on [0, <*>), or ( — oo, <=o) if desired, 
vanishing at 0, with properties (a), (b), (c) for the relevant parameter 
values. In his early work, and later also in his joint book [92] with 
Paley, Wiener studied the regularity of Brownian paths, proving that 
almost no function in C is of bounded variation in any interval, and 
finding estimates of the moduli of continuity for the functions. 

It is characteristic of his writing that in the details of his construc­
tion Wiener leaves it to the reader to recognize that property (c) is 
true, as an implication of the explicit distribution formulas he writes 
down. In general he preferred writing formulas to making descriptive 
remarks except in his later years. This preference helped the rigor but 
not the reader. 

In [92] X(t, co) is defined in a different and very elegant way; 
X(t, •) is a function on the unit interval with Lebesgue measure, 
properties (a), (b), (c) hold, and X(-, co) is a continuous function for 
almost all co. The construction does not involve the Daniell integral, 
and X(t, co) is represented explicitly as the sum of a Fourier series 
with random coefficients. 

In a little-known paper of 1921 [18], Wiener applied his measure to 
obtain a second model for Brownian motion, a model which is the 
more exact model rediscovered by Ornstein and Uhlenbeck in 1930. 
In this model the paths are defined by functions which (almost all) 
have continuous first derivatives but these derivatives have infinite 
variation on every interval. 

The stochastic integral /(ƒ) =ff(t)dtX(t, co) was one of Wiener's 
most fruitful ideas. (We shall write d for dt below.) Here X(t, co) is 
from the Brownian motion process, first model, and ƒ is Lebesgue 
measurable and square integrable on (—00, 00),/£Z,2(-- 00, oo). The 
integral, a random variable, can be defined in a reasonable way even 
though the function X(*, co) has infinite variation on every interval, 
for almost all co. The transformation ƒ—>!(ƒ) is a linear L2-norm pre-



WIENER'S WORK IN PROBABILITY THEORY 71 

serving transformation from L2( — <*>, <*>) into the L2 space of square 
integrable random variables. The stochastic integral, which was gen­
eralized later by Ito to allow integrands ƒ which may depend on co 
as well as t, was for Wiener and still remains a fundamental tool in a 
variety of contexts, only a few of which will be mentioned below. 

In [92] it is shown that Wiener's harmonic analysis of functions 
on (-~oo, 00) is applicable to functions defined by the stochastic 
integral ff(x+iy+t)dX(t> co), where ƒ is a function analytic in the 
strip 13/1 <c and satisfies certain boundedness conditions. Moreover 
the asymptotic properties of the zeros of h are derived. 

Suppose tha t { Y(t), — co <£ < oo } is a stationary stochastic process 
in the sense that Y(t) is a random variable and that the inner product 
R{t) = (Y(t+s), Y(s)) does not depend on s. Then the function i?(-)» 
supposed continuous, is the Fourier transform of a measure, the spec­
tral measure of the process, which dominates the harmonic analysis 
of the process. Wiener showed, and applied repeatedly, that the 
Brownian motion process acts as though the derivative X'(/, co) pro­
cess exists, is stationary, and has a constant spectral density. For 
example, if A is a suitably restricted linear operator the equation 

(1) A(Y) = Z(t,«) 

can be solved to give a stationary Y(t) process depending on the Z(t) 
process, supposed given and stationary. The spectral measure dF2 of 
the Y{t) process is obtained from that of the Z(t) process, dFu by 
means of a function g determined by A : 

(2) dF2~ \g\2dFt. 

In many contexts (1) is replaced by 

(1') A(Y)-X'(f,a) 

where X'(tf co) is from the fictitious derived process of the Brownian 
motion process and the equation is given meaning by a formal inte­
gration. In this way the solution of (1') finally appears as a stochastic 
integral defining a stationary process and (2) is replaced by dF2 

= const |g | 2d£ in accordance with Wiener's principle. Equation (1') 
arises for example in noise problems in which the right side represents 
"white noise," a "Brownian driver" a source which to a first ap­
proximation produces power uniformly distributed over all frequen­
cies. 

The preceding theory has been stated in linear terms. Wiener also 
discussed analogous problems in a nonlinear context [108], [191] in 
which he used multiple stochastic integrals as a fundamental tool. The 
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translational shift X(t, o>)~>X(t+s, od) defines a probability preserv-
ing transformation of Wiener measure (here the /-interval is ( — oo, oo ) 
and the condition -XT(0, co) =0 is not imposed because only differences 
like X(t2f ù))—X(h, co) are involved). Hence a multiple stochastic 
integral 

ƒ • ' ' ƒ ƒ(* - h, ' ' • , / - Q dX(th o) • • • dX(tn, ») = *(/, «) 

defines a family of random variables which is strictly stationary in the 
sense that joint distributions of sets of the h(t, •) are invariant under 
the shift. Wiener showed [l9l] how to evaluate moments of such 
multiple stochastic integrals and make a spectral analysis of the 
stationary process so defined. Moreover |l08] he showed how fami­
lies of this type "polynomial chaoses" could be used to approximate 
very general stationary processes. Ergodic theory is a natural tool in 
this area. 

In summary, and neglecting Wiener's work in prediction theory 
which will be discussed elsewhere, Wiener's most important con­
tributions to probability theory were centered about the Brownian 
motion process, now sometimes called the "Wiener process. " He con­
structed this process rigorously more than a decade before probabil-
ists had made their subject respectable and he applied the process 
both inside and outside mathematics in many important problems. 
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