
ASYMPTOTIC BEHAVIOR OP SOLUTIONS OF 
NONLINEAR VOLTERRA EQUATIONS 

BY R. K. MILLER 

Communicated by F. John, September 9, 1965 

In this note we show how certain known results for delay differen­
tial equations can be extended to systems of integral equations of the 
form 

Jo 
(1) x(f) - ƒ(!) + a(t - s)i(s, *(*)) ds (t ê 0). 

We make the following assumptions: 
(Al) fit) is uniformly continuous and bounded on 0 g £ < QO, 
(A2) a(t) is a square matrix whose entries are Li(0, oo), 
(A3) g(t, x) is continuous in (t, x) for 0 ^ £ < oo, \x\ < oo and g is 

uniformly almost periodic in t uniformly on compact subsets of x in 
real w-space i?n, and 

(A4) x{t) is a bounded solution of (1) for 0^t< oo. 
Let Q, be the positive limit set of x(t). We refer to [2] for the defini­

tions and properties of almost periodic functions and limit sets. The 
analog for integral equations of [2, Theorem l ] is 

THEOREM 1. If (A1)-(A4) are satisfied, then to each point z in Ù 
there corresponds a sequence tm—><*> as m—+<x> and functions G(t, x), 
X(t) and F(t) such that 

(i) l i m i t s | x(t+tm) -X(t) | + \f(t+tm) - F(t) | = 0 uniformly on 
compact subsets of — oo <t< oo, 

(ii) l i m i t s * g(t+tm, x) =G(t, x) uniformly for all t and for x on com-
pact sets, and 

(iii) on the interval — oo < / < oo, X(/)££2 and 

(2) X(t) = F(t) + f a(i- s)G(s, X(s)) ds. 

PROOF. AS is well known in harmonic analysis the convolution of an 
L\ function with an essentially bounded function yields a uniformly 
continuous function. Hence x(t) is bounded and uniformly continu­
ous on the interval 0 ^ / < oo. 

Given z in Ö let \tm\ be a sequence such that tm—>oo and x(tm)—*z 
as w-^oo. Define xm(t) *=x(t+tm) &ndfm(t) ~f(t+tm) for t}> —tm. Since 

*»(0 = fm(f) + 1 «(/ — S)g(s + tm, Xm(s)) ds, 
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the proof can now be completed in the same way as the proof of [2, 
Theorem 1]. 

We remark that with essentially the same proof one can establish 
a modified version of Theorem 1 in which the lower limit of integra­
tion in equation (1) is — oo. Note also that one could add to the right 
side of (1) a bounded measurable function h(t)—»0 as t-—><*>. 

Since a bounded continuous function must tend to its positive limit 
set, Theorem 1 above can sometimes be used to obtain results on the 
asymptotic behavior of solutions. We shall illustrate the technique 
with some examples. Consider the scalar equation 

J o 
(3) x(t) = f(f) - J a(f - s)x(s) ds. 

Paley and Wiener [4, pp. 58-63] prove: 

THEOREM 2 ( P A L E Y - W I E N E R ) . Suppose a(t) is Zi(0, oo) and fit) is 
bounded, measurable and tends to a limit jo as t—> oo. For each such f the 
solution of (2.1) is bounded and tends to the limit 

(4) x(t) —» xo = /o / f 1 + I a(s) ds) as t —» oo 

if and only if when Ke(u) ^ 0 one has 

f 00 

(5) I a(t) e x p ( - « 0 dt7* — 1. 
Jo 

To this we add 

COROLLARY 1. Let a(t) and f(t) be as in Theorem 2. All bounded 
solutions of (3) satisfy (4) if and only if (5) holds whenever Re(u) = 0 . 

Under the hypothesis of Corollary 1 some solutions may be un­
bounded as t—>oo. If we do have a bounded solution, then Theorem 1 
above applies. The limiting system corresponding to (2) is in this case 

X(f) = / o - f a(t - s)X(s) ds. 
J ~oo 

The transformation Y(t) =X(t) —Xo gives 

Y(t) == - f a(f- s)Y(s)ds ( - « < / < oo). 
J -oo 

For this last equation it is known that Y(t) = 0 is the only bounded 
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solution if and only if the Fourier transform of a{t) is never — 1 , cf. 
[4, p. 59 and p. 63]. 

Levin [ l ] has proved a nonlinear version of Theorem 2. Consider 

(6) x(f) = ƒ(/) - f a(f- s)g(x(s)) ds, 

with the following assumptions: 
(Bl) ƒ is bounded and measurable on 0^t<x and tends t o / 0 as 

(B2) g(x) is C(— oo, oo), g(0) = 0 , and g is strictly increasing, and 
(B3) a(t) is C[0, oo), Cl(0, oo) and Li(0, oo), a(t)^0, a'(t)£0 and 

a'(0^0 on any interval except possibly a"(t)^Q for all large /. 
I t is possible to separate the boundedness criterion in Levin's prob­

lem in the same way tha t Corollary 1 refines Theorem 2. The limiting 
system for (6) is 

(7) X(f) = /o - f a(f - s)g(X(s)) ds. 

Assumptions (B2) and (B3) insure that (7) has a unique constant 
solution x0. Moreover, one can show that x(f) = x 0 is the only bounded 
solution of (7). This proves 

THEOREM 3. If (B1)-(B3) hold and if x(t) is a bounded solution of 
(6), then x(t)-*Xo as /—>©o. 

From Levin's results we see tha t if, in addition, f(t) exists and is 
Li(0, oo ), then all solutions of (6) exist and are bounded for positive t. 
Other criterion can be given for boundedness. For example suppose 
f(t) is bounded, a(t) is Li(0, oo) with a(t) ^ 0 almost everywhere and 
g(x) = exp(#) — 1. If x(t) is a solution of (6), then for as long as it 
exists 

x{t) à ƒ(/) ~ f a(t-s)ds> - M. 
Jo 

Hence we also have 

x(f) g f(t) + f a(t- s)g(-M) ds < N. 
Jo 

By general results of Nohel [3], x(t) exists and is bounded on the 
interval 0^t< oo. 
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