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W. S. Massey has denned a class of higher order cohomology oper­
ations of several variables, the higher products [2]. In this paper, 
we shall present a relativized definition of the higher products. We 
shall go on to list some of the algebraic and f unctorial properties of 
these operations. Finally, we shall describe a related cohomology 
operation of one variable. In certain cases, the latter operation can 
be computed in terms of primary Steenrod operations. 

1. Notation and definitions. Throughout this paper, let X be a 
topological space and let (X», At) be pairs of subspaces of X, for 
i = l, • • • , k, such tha t UjLi ArC.Cfi-i Xr. Furthermore, for l ^ i , 
j^zk, assume tha t the triads (X, Ai, Aj) are excisive in the singular 
cohomology theory. This condition is satisfied if each Xi and Ai are 
open in X or if X is a CW complex and each Xi and Ai are subcom­
plexes. Let «i, • • • , Uk be cohomology classes in the singular co­
homology groups Hpi(Xi, At), • • • , Hpk(Xk, Ak) respectively, where 
the coefficients are in a fixed commutative ring R with identity. 
Finally, let p(i, j) = YZ-t Pr~ 1 and (X, A) = (plfml X r , UKi Ar). 

Under certain conditions, we may define the Mold product 
(ui, - • • , Uk). Our definition shall be similar to the provisional defini­
tion of Massey [2]. 

DEFINITION 1. A defining system for (ui$ • • • , m), A, is a set of 
singular cochains (a*,,-), for l^i^j^k and (i, j ) ^ ( l , k), satisfying 
the conditions: 

(1.1) aijGC*™+Kty-i Xr, U;.«A r) , 
(1.2) diti is a cocycle representative of u^ i= 1, • • • , k and 
(1.3) 8a«fi=2£j {-W+i-'Wiai.rOr+i.t. 

The related cocycle of A is the singular cocycle of C*(X, A) 
(1.4) YiZl (" l )»+ 1 -^< 1^f l i i r f l r+ l .* . 
DEFINITION 2. The Mold product (ui, • • • , «*) is said to be de­

fined if there is a defining system for it. If it is defined, then 
(ui, • • • , m) consists of all classes wGi?2>(1,fc)+2(X, A) for which there 
exists a defining system A whose related cocycle represents w. 

If k = 2, then the higher product (ui, u2) is the ordinary cup product 
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U\u2. If ft = 3, then (u%f u2, uz) is defined if and only if the cup products 
Uiu2 = 0 and u2Uz = 0. In this case the related cocycles are of the form 
ai2a33 ~(--l)Plöu^23. This is a secondary operation, the Massey triple 
product as defined in [4], 

The Mold product is a (ft —l)-order cohomology operation of ft 
variables. In order for (ui, • • • , uu) to be defined, it is necessary that 
the (ft — 2)-order operations (ui, • • • , w&-i) and (u2, • • • , Uk) be 
defined and contain the zero element. In general this condition is not 
sufficient. There must exist defining systems A' and A" for 
(ui, • • • , Uk-i) and (u2t • • • , m) respectively, for which not only do 
the related cocycles of each cobound but also a'^ — a"} for Ki 
^j<k. In this case, we say that (ui, • • • , Uk-i) and (u2l • • • , Uk) 
vanish simultaneously. 

2. Properties. We take the position that the higher products are 
analogous to the cohomology cup product, The properties listed below 
are generalizations of well-known relations satisfied by the cup 
product. 

2.1. Naturality. For i = 1, • • • , ft, let (Ft-, Bi) be pairs of subspaces 
of the topological space 7 satisfying the conditions of §1. Let 
g: F—>X be a continuous map such that the image of (Yi} Bi) under 
g is contained in (X<, Ai) and denote by g»-: (Ft-, Bi)—>(Xi, Ai) the 
induced map. Also, with (F, 5) = (n?.i F n U?.! J5r), let g: (Y, B) 
—>(X, A) be the induced map. If (ui, • • • , Uh) is defined, then so is 
(g*tfi» ' • • f Ûu*) a n d I* («it • • ' » «*>C<gNii • • • > £*«*}-

2.2. Scalar multiplication. Assume that the product («1, • • • ,«*> 
is defined. Then (wi, • • • , xutf • • • , Uk) is defined for any # £ J R , 
J = l, • • • , ft and x(uu • * • , «*)C(«i, • • • > ##*, • • • > **k). 

2.3. Coboundary formula. For some / = 1, • • • , ft, assume that 
(Xfl At) = (£, O and (X,-, j4<) = (F, C) for *?**, where (F, 5 , Ç) is a 
triple of topological spaces. If (uu • • • , ut, • • • , «*) is defined as a 
subset of fl"p(1»*)+2(J3f O , then («i, • • • , out, • • • , «*) is defined as 
a subset of flK^wCF, 5) and 

d(uh • • • , ut, - • • , Uk) C (-l)m(wi, • • • , ô̂ f, •••,«*> 

with w= 2 J £ Î j^r+ft. 
2.4. Loop suspension. Let 7r: PX—>X be the path loop fibration over 

X. Then £4 = 7r""1(-4) is the space of paths in X starting from the base 
point and ending in A. The relative loop suspension homomorphism 
a: Hn(X, A)—*Hn~l(EA) is defined as the composite map 

7 T * » 

H*(X, A) -> H»(PX, EA) *T E»~l(EA). 
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Assume tha t {uu • • • , uk) is defined as a subset of Hp^'k)+2(X, A). 
Then <r(wi, • • • , uk) is the subset of H^1^)+1{EA) consisting solely of 
the zero element. 

2.5. Associativity. Let (ui, • • • , Uk) be defined as a subset of 
jyi>(i,*)+2(x, .42and let vGH«(X', A'), where (X', 4 ' ) is also a pair of 
subspaces of X. Then the Mold product (ui, • • • , w#, • • • , Uk) is 
defined for each * = 1, • • - , fe as a subset of ff'U-w+^CXnjr', 4 U 4 ' ) 
and satisfies the relations 

<«i, • • • , « j > C ( « I , • • • , ukv), 

v(uu • • • , « * > C (—l)*tf(w*x> • • • , « * > 

and 

<«i, • • • , ««», «*+i, • • • , uk)r\ («i, • • • , « « , w*n-i, • • • , Uk) 7* 0. 

These relations may be interpreted as equalities modulo the sum of 
the indeterminacies. 

2.6. Symmetry. Assume that the higher product (ui, • • • , uk) is 
defined. Then the symmetric product (w*, • • • , u%) is also defined and 
(uu • • • , uk) = (~ l)n(uky • • • , «x> with * = ]Ciâr<^fc pr/>. 
+ ( * - l ) ( * - 2 ) / 2 . 

2.7. Per mutability. Assume tha t all the Wold products (ut, • • • , # * , 
Wi, • • • , w«-i) are defined simultaneously as subsets of JH»(1»*)+*(X, -4). 
Then there are classes wtÇz(ut, • • • , w*_i), for J = l, • • • , fe, such 
tha t 53?.! (-l)«<*+i)+»<oW|=sso, where i r ( l ) = 0 and ir(t)=*(pi+ • • • 
+£«_i)(£<+ • • • +£*) f o r * > l . 

The proofs of these formulas and relations are computational in 
nature. For the proof of 2.5, we use the Ui-product of Steenrod [3] 
and a formula of G. Hirsch [ l ] . The formulas 2.6 and 2.7 require the 
use of a set of "commuting" chain homotopies which we may con­
struct by means of the acyclic model theorem. 

3. The operation (u)k. If we assume that wi = w2 = • • • =uk 

— uÇzHm(X, A), then we can define a related higher order cohomol-
ogy operation (u)k with less indeterminacy. 

DEFINITION 1'. A defining system for (u)k, A*, is a set of singular 
cochains (an), for n = l, - - • , k — 1, satisfying the conditions: 

(3.1) a n e C w ^ + 1 ( ^ i ) , 
(3.2) ai is a cocycle representative of u> and 
(3.3) 8a n = £ # (-1)'*<—«*,<*,_. 

The related cocycle of A* is the singular cocycle of C*(X, A) 
(3.4) X£i (-!)'»<-»*,<»»_. 
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DEFINITION 2'. The operation (u)k is said to be denned if there is a 
defining system for it. If it is defined, then (u)k consists of all classes 
wÇzHkim~1)+2(X, A) for which there exists a defining system A * whose 
related cocycle represents w. 

If (u)k is defined, then so is the fe-fold product (uf • • • , u) and 
(u)kC.(u, • • • , u). Also (u)k is defined if and only if (u)k~l is defined 
and contains the zero class. 

Let p be an odd prime and let j8 be the Bockstein operator associ­
ated with the exact sequence of coefficient groups 0—>ZP~*Zp*-~*Zp 

—»0. Furthermore, let Pm be the Steenrod pth power operation, 

Pm: H«(X; Zp) -» H^^~l\X\ Zp). 

THEOREM A. If u£:H2m+l(X; ZP), then (u)p is defined as a single 
class in H2m*+*(X; Zp) and (u)*=-flPmu. 

If u is a one-dimensional class (mod p) for any prime p, then we 
may completely characterize the operation (u)k by the following 
theorem. 

THEOREM B. Let iÇzHl(Zp»;ZP) be the mod p reduction of the funda­
mental class in of Hl(Zpn; Zpn). Then (t)pn is defined as the single class 
~-fint>nÇzII2(Zpn\ Zp), where j3n is the Bockstein coboundary operator 
associated with the exact sequence of coefficient groups 

0-*Zp-> Zpn+i -* Zp» -* 0. 
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