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I. Introduction. Let A be a nonempty subset of the integers, and 
let L2 (A) denote the closed subspace of L2(0, In) spanned by the ex­
ponentials {e iXa: |X£A}. Suppose we are given the values of an arbi­
trary function ƒ in L2(A) on a fixed interval of positive length 8. When 
can we determine the values of ƒ outside tha t interval? A precise 
answer to this question will be announced below, after some essential 
terminology has been introduced to help us handle the problem. 

Accordingly, let x« denote the indicator function for the interval 
(0, ô), and let -4a(/)=X5/; in words, As(f) is simply the function 
which coincides with ƒ on the interval (0, 8) but vanishes elsewhere. 
We say that a set of integers A is an extrapolation set of length p if the 
mapping A&: L2(A)—>xa£2(A) has a bounded inverse for 8 > p but fails 
to have a bounded inverse whenever 5<p. I t is easy to see that every 
set of integers has a unique extrapolation length p, and AT1 will 
extrapolate functions in L2(A) from (0, 8) onto (0, 2T) as long as 5>p. 
Of course, since L2(A) is translation invariant, there is nothing sacred 
about our choice of the interval (0, 8) ; any other interval of length 8 
would serve the same purpose. 

I t turns out that the extrapolation length of a prescribed set can be 
explicitly computed if we know how sparsely the points in this set 
are distributed. The appropriate concept to use in this connection is 
the notion of uniform outer density. Following Kahane [2], we define 
the uniform outer density of a set A to be 

1 ( 
lim — < sup N(a, a) 

where N(<r, a) represents the number of points of A contained in the 
interval [cr, a+a). Our main result expresses the exact relationship 
between outer density and extrapolation length. 

THEOREM. Let A be a set of integers whose uniform outer density is 
D(A). Then A is an extrapolation set of length p if and only if p = 2xJ9(A). 

A detailed proof of this Theorem, further generalized to include L2 

spaces of exponential functions with gaps in their spectra, will be 
published elsewhere [7]. In what follows we briefly outline our plan 
of attack to expose the main ideas. 

• 
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II. Exponential subspaces. Fix an arbitrary set of integers A, 
choose a number ce>0, and let Ea denote the closed subspace of 
L2(0, co) spanned by the exponentials {e-~(a+iX)a5|X£A}. For any 
g£L2(0, 00) and any h>0, let (Thg)(x) denote the restriction of 
g(x+h) to the non-negative reals, and let Ta denote the restriction 
of Th to the subspace Ea. Obviously Th(Ea) QEa for all h^O because 
Ea is generated by exponentials. Using L2 norms, we now define 

IIrill- s u p | ^ l (g*o). 
°*Ea II g II 

As the following lemmas suggest, this quantity will play an im­
portant role in our subsequent work. 

LEMMA 1. If | |7?|| = 1 for some |8>0, then ||r*|| = l for all a > 0 . 

LEMMA 2. A necessary and sufficient condition for A to be an extra­
polation set of length p is that 

.up{*|||ri||-i}-p. 
LEMMA 3. If A is an extrapolation set of length p, then limaH>001| Ta\\ = 0 

whenever h>p. 

Each of these results may be proved by arguments which are quite 
elementary [6]; altogether, they reduce the problem of computing 
extrapolation length to one of estimating an operator norm. Such an 
estimate has already been obtained by Lax [4], who derived the 
fundamental inequality 

where 

and 

nrfir so-«.«xi-.-"'r1, 
0*(T) = inf | Ba(<r + *T) I 

— eo <a < » 

. _ s + X — ia X + ia 

Ms) = n —mr^ • i—- (s = a + iT)-
XGA s -jr A "T ta X — ta 

It is possible to secure asymptotically sharp upper and lower 
bounds for 0«(r) with the help of a useful lemma due to Koosis. The 
proof of a similar result may be found in [3]. 

LEMMA 4. Let cr and r be real numbers, r > 0, and let w be any complex 
number with Im w>0. Then, for any e>0, there is a 5<0 such that 
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T(2 - e) | cr + ir - w | r(2 + e) 
J m w <£ l0g g I m w 

| w - o - | 2 I <r + £r — w | l ^ — ^ ^ 
whenever \r/(w—<r)\ <ô . 

COROLLARY 1. ///fee condition 

lim sup i sup E * i g 
<*-+«> ^ or xeA OLz + (A + <r)z) X2 + (X + (7)2 

is satisfied, it follows that || r*|| < 1 /or aZZ fe>p. 

LEMMA 5. Let w be any complex number such that Im w > 0 , and ZeJ 
da(w) denote the distance from the space Ea to the normalized exponential 
function (2 Im w)l,2eiwx. Then da(w) = \ Ba(w*) | , where the asterisk 
denotes negative complex conjugation. 

The distance formula cited above [5 ] actually implies the converse 
of Corollary 1. To see this, fix a positive value of r and decompose 
the normalized exponential functions (2r)1/2e~(T"H(r)a: by orthogonal 
projection into Ea so that 

(2T)*/V-<«+*>. - ka(<r\x) + ƒ«(*;*), 

where/«GE* and ka is orthogonal to Ea. Now apply Th to both sides 
of this equation and take norms to obtain the inequality 

^h£\\T%\\+\\T*ka\\. 

Since || Th\\ ^ 1, it follows from Lemma 5 that 

e^h^\\T%\\ + \Ba(a + ir)\. 

Consequently, if | |T2 | |<1 , an application of Lemma 3 at once 
yields 

lim sup <sup | Ba~l(<r + ir) \ f g eTh 

COROLLARY 2. If || r* || < 1 for all h>py then 

lim sup i sup £ a \ S 
«-«> I <r XeA Oiz + (A + ar)V 

I IL A density relation. The summation appearing in Corollary 1 
and Corollary 2 has a number theoretic interpretation which was first 
conjectured by Professor J.-P. Kahane for the case p = 0. Our proof 
that Kahane's conjecture is true in general rests on the next lemma. 
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LEMMA 6. Let A be an arbitrary set of integers having outer uniform 
density equal to D(A). Then, for any integer k>0 and any positive €, 
there exists a number I ̂  1 having the property that there are k consecutive 
intervals of length I, each of which contains at least (D(A)~e)l points 
of A. 

If we define Qj(k) to be the interval [ja/kt (j+l)a/k) and take 

M (a) = supiV(<7, a), 

it follows that 

SUP X) ^ M{a/k) X) sup ( ). 
* xeA a2 + (X + or)2 ƒ xea,.(*) \ a 2 + X2 / 

Using t he wel l -known formula [ l ] 

ir sinh 2wk 1 * k 

+ 2 E cosh lick — 1 k ,«i j 2 + k2 

we may pass to the limit as a—»<*> and then as £—»oo to conclude that 

lim sup hup £ — - > g TTZ)(A). 

«->oo ^ <r cr + (A + a)1) 

An application of Lemma 6 and a similar argument now suffice to 
establish the reverse inequality 

lim sup <sup J~] - > è 7T(D(A) — e). 
«__>„ * \ / *-* a2 + (X + <T)2) 

This completes the proof of our main theorem. 
ACKNOWLEDGMENTS. We wish to express our thanks to Professors 

J.-P. Kahane, P. Koosis, and P. D. Lax for their valuable suggestions. 
Added in Proof. We recently learned that Professor Kahane has 

obtained the principal theorem of this note in a more general setting 
with different methods. However, our techniques can be extended 
without difficulty and may be of some interest in themselves, since 
we rely mostly upon simple properties of the shift operator to secure 
our results. 
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CASE INSTITUTE OF TECHNOLOGY 

ON THE EQUATION fn+gn~l 

BY FRED GROSS 

Communicated by Walter Rudin, July 23, 1965 

There is a close relationship between F e r m a i s last theorem and 
the family of solutions ƒ and g of the functional equation 

(1) xn + yn = 1. 

If, for example, SD denotes the class of all pairs (ƒ, g) of single 
valued functions ƒ and g meromorphic in a domain D and having the 
additional property that , for some z0 in JD, f(zQ) and g(zQ) are both 
positive rationals, then either, for w>2 , (1) has no solutions in SD or 
F e r m a i s last theorem is not true. 

In this note we discuss the solutions of (1) meromorphic in the 
complex plane. We shall call such solutions Mc solutions. 

THEOREM 1. For n = 2, all Me solutions are of the form 

(2) ƒ = and g(z) = . 

PROOF. This follows directly from a theorem on uniformization [ l ] . 
We need only note that for w = 2, (1) is of genus zero and that the 
rational solution (2), with f3(z) —z, maps the whole s-plane in a 1-1 
manner on the Riemann surface of (1). 

THEOREM 2. For n = 3, Mc solutions exist. One such solution is given 
by: 

ƒ = 4-i/e( s>')-i(i + 3-1/2.41/8 ^ 

g - 4~"«( i>)-i(l - 3-w-Vi* p), 

where & is a Weierstrass p-function. 


