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1. Introduction. Poenaru [4] and Mazur [3] gave the first exam­
ples of pseudo 4-cells whose products with the unit interval were com­
binatorial S-cells. Curtis [ l ] and Glaser [2] gave similar examples for 
w ^ 5 . In addition, it was shown in [2], that, for w> 5, the pseudo 
w-cell Mn could be expressed as the union of two combinatorial n-
cells whose intersection is also a combinatorial w-cell. Unfortunately, 
the techniques used in [2 ] gave no hope of lowering the result to n = 4. 

The purpose of this announcement is to give another example of 
a pseudo 4-cell W with the property that WXl^P, but in addition 
W can be expressed as the union of two combinatorial 4-cells whose 
intersection is also a combinatorial 4-cell. This also gives an example 
of two Euclidean 4-spaces intersecting in an Euclidean 4-space so 
that the union is not topologically £ 4 . 

Our techniques and terminology basically follow that found in 
[6], [7]. 

2. Construction. Let us consider a figure eight expressed as the 
union of four line segments a, /3, 7, and S and three vertices a, &, and c 
as indicated in Figure 1. Let K be the contractible noncollapsible 2-
complex formed by attaching two disks to the figure eight by the 
formula ftyy^b^ha and baorlfi"~l$y. 

Let T be a solid two-holed 3-dimensional torus in E3. The pseudo 
4-cell W will be formed by attaching two 2-handles to the boundary 
of TX [0, 1 ] along the curves I \ and T2 embedded in i n t ( r x {1}) C T 
X [0, l ] as indicated in Figure 1. 

LEMMA 1. W can be considered as a regular neighborhood of a com­
binatorial embedding of K in W. 

PROOF. We can obtain a copy of K by "pushing" TiWr2 down to a 
core of T X [0, l ] in an appropriate manner and then considering the 
point set consisting of the trace of this "pushing" plus the two disks 
gotten from adding the two 2-handles. The remainder of the proof 
consists of showing how we can triangulate W so that K is a sub-
complex and W\ K. The techniques used here are similar to those 
of [7]. 
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THEOREM 1 .7n(BdW)^l . 

PROOF. 7ri(BdIF) has the following group presentation: 
generators: a, b, x, y and z 
relations: 

I. âiïâyâyaxaxâiïâyayaxaiïâïïâyayax** 1 

II . â$âyayaxa$âzaxâ%âyâyaxa$~ l 

III. yhyzbzybyhyzbzybyzhzyb= 1 

IV. ybyzbzybyzhzyâyaxbzhyzbzyhyzhzyb=1 

IV £ ây $ ây ây a x a xâ = 1 

IV zybyhyzbzyb=l 

Ki : x â l â } ' o 3 ' f l ^ a x û 5 = 1 

K2: âhyzbzybyzhzy— 1 

FIGURE 1 

This group can be shown to have a nontrivial representation in Ps 
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by letting a->(14253), Z>->(12543), «—>(14352)9 :y->(12453) and 
*-»(14523). 

3. Main results. 

LEMMA 2. Suppose K is a contractible 2-subcomplex in the interior of 
a combinatorial ^-manifold M and W is a regular neighborhood of K in 
M. If K can be combinatorially embedded in E3, then W can be em­
bedded in £ 4 and WXI**I*. 

The proof of this lemma follows from results of [l] and [5]. 

THEOREM 2. There exists a pseudo 4-cell W^I* such that WQE\ 
WXl~Pand W~X\JY, where X~Y~Xr\Y~I*. 

This theorem follows from Lemma 1, Theorem 1, and Lemma 2 
and the fact that K**Ki\JK2 where Kx\ 0, K2\ 0 and KinK*\ 0. 

Combining Theorem 2 with results from [2], we get the following 
two corollaries. 

COROLLARY 1. For w^4 there exist pseudo n-cells Wn9^In such that 
WnXl~In+l and Wn~XnKJYn, where Xn~ Yn~Xnr\Yn~In. 

COROLLARY 2. For n*z3 there exist open contractible combinatorial 
n-manifolds 0n?*En such that 0 n « [ / n U F n , where Un^Vn^Unr\Vn 

REMARK. The result for n = 3 is gotten by considering the comple­
ment of a double Fox-Artin arc in 5s. 

The next result says that in some sense the given embeddings are 
the simplest possible in order to get an example where Ti(BdW)^l. 
Also the linking or local knottedness of Ti or T2 with itself or with 
each other is irrelevant if the embeddings are "nice" in the opposite 
ends of T. 

Each of lk(a, K) and lk(c, K) is merely two circles, G and C2 

say, joined by an arc A. We will say that the embedding of K in the 
interior of a combinatorial 4-manifold M4 is nice at a if Ik (a, K) in 
lk(a, M4) is such that there exists a 2-sphere in lk(a, Af4) separating 
G and G and meeting A in a single point z £ int A. Similarly for the 
vertex c. 

THEOREM 3. Let KCint MA and suppose M4, \ K. If the embedding 
of K is nice at a and c, then MA « J4. 

COROLLARY 3. IfKQint Mn (n^5) and Mn \ K, then Mn^In. 

The techniques used in proving Theorem 3 are similar to those 
used in [7]. The proof of Corollary 3 follows from the proof of Theo­
rem 3 or applying the results of [S]. 
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1. Consider an astronomer and his observation field, i.e., the set 
of observable (light or radio) signal emitting loci of the universe. Let 
the observation field be ordered by attaching a date to each observa­
ble locus indicating the time in the history of the universe that the 
signal was emitted from its source. Whereas both the astronomer and 
his observation field age with time, the observations of the astron­
omer may trace a sequence of loci whose time labels proceed forward 
or backward in time. 

Consider now, a finite set S of events in Ln, w-dimensional space-
time1 (n*z2). A rectilinear world line segment with endpoints in S 
will be called a rectilinear connection in S and a set of rectilinear con­
nections which form a polygon with vertex set S a polygonal connec­
tion of S. The clock time of a polygonal connection is defined to be the 
sum of all the time separations2 of its rectilinear connections. A polyg­
onal connection having either the least or the greatest clock time of 
all possible "circuit states," i.e., all possible polygonal connections of 

1 Riemannian «-space having fundamental form #==(^1)24- • • • -f-frfo*""1)2 

2 The time separation of a rectilinear connection with endpoints Eu* (xu, • • * , **~ , tu) 
and Ev: (xl

v, • • • , < ~ \ U) is equal to [ft,-*.)»- E w ( « ! - * i ) l ] 1 / l and will be de­
noted by s(EuEv). 


