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1. Generalized interpolation by entire functions. 
DEFINITION 1. Let 5 be a set of complex numbers. The distance 

from a point z to 5 is denoted by d(zt S) i.e., 

(1) d(z,S) = g.l.b. | * - * | . 
SES 

THEOREM 1. Let S be a set of complex numbers such that 

(2) d(z,S)£ | « I 1 -

for some e > 0 and all sufficiently large \z\. Let {zh} = {z\, z2, • • • } be 
a sequence of complex numbers without finite limit points, then there 
exist entire functions F(z) with F(m)(zh)(ES for m = 0, 1, 2, • • • ; 
h = l, 2, 3, - - - . The set of such functions has the power of the con­
tinuum, even when a finite number of the values F^m)(zh) are prescribed 
arbitrarily in S. 

COROLLARY 1. There exists a nondenumerable set of transcendental 
entire functions, which together with all their derivatives, assume Gaus­
sian integers or Gaussian primes etc. at all Gaussian integers. 

If {zh} consists of real points and 5 is a set of real numbers such 
tha t d(x, 5 ) ^ | x | 1 _ e (e>0) for all sufficiently large \x\, then gen­
eralized interpolation by real entire function is possible which gives 
the following 

COROLLARY 2. There exists a nondenumerable set of transcendental 
1 Presented to the Society, April 24, 1965. 
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entire functions, which together with all their derivatives, assume rational 
primes at all rational integers. 

2. Generalized interpolation by analytic functions. The Weier-
strass factorization theorem and the Mittag-Leffler theorem can be 
generalized to noncompact Riemann surfaces. Consequently, we have 
the following generalization of Borel's interpolation. 

THEOREM 2. Given a noncompact Riemann surface R and a differen­
tial operator on R. Let {zh} be a sequence of points in R without limit 
points in R. Given a sequence of complex numbers {au} where 
Z = 0, 1, 2, • • • , m/i—1; ft — 1 , 2, 3, • • • , then there exists a function 
<t>(z) analytic in R so that 

(3) 4><lK*k) - au 

for 1 = 0, 1, 2, • • • , w f c - l ; ft = l, 2, 3, • • - . 

This generalized Borel interpolation is used to prove the following 

THEOREM 3. Given a noncompact Riemann surface R, a differential 
operator on R, and a sequence of points {ZH} , zh<ER, without limit points 
in R. Let S be a set of complex numbers such that 

(4) d{i,S)£ \z\l-

for some e>0 and all sufficiently large \z\, then there exist functions 
F(z) analyticinRwithF^(zh)&Sform = 0,1,2, • • • ;ft = l , 2 , 3 , 
The set of such functions has the power of the continuum, even when a 
finite number of the values F{m)(zh) are prescribed arbitrarily in S. 

3. Examples in which generalized interpolation is not possible. We 
give several examples indicating that some of the limitations imposed 
on the set of values S and the sequence of points {ZH} are necessary. 
If S is discrete, then the condition that the sequence {zh} has no 
cluster points in R is obviously necessary in order to have an inter­
polation by a nonconstant analytic function. I t is also clear, by the 
example 5 = {0}, that some restriction on 5 is necessary. 

The following lemmas, theorems and corollaries give less trivial 
examples which show tha t a generalized interpolation by nonconstant 
analytic functions is not always possible, even when 5 is a rather 
big portion of the set of all complex numbers. 

LEMMA 1. If an analytic function f(z) has all its derivatives at two 
points in a finite set S, then f(z) satisfies a differential equation of the 
form f^m)(z) =/Cw)(s) for some m<n where n is bounded by a bound de­
pending only on S, and the set of values {f(k)(a)\k = Q, 1, 2, • • • } is 
therefore finite for any point a. 
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LEMMA 2. Given a finite set S and z^z\, then there is at most a finite 
set of analytic functions f(z) so that 

/w(*o) G S, /«(«O G S (m = 0, 1, 2, • • • ). 

LEMMA 3. Given a finite set S and a point z0, then the set of points z\, 
so that there exists a nonconstant analytic f unction f (z) withfim)(zo)&S, 
jf(m)(3i)£S (w = 0, 1, 2, • • • ) is denumerable. 

THEOREM 4. Given a finite set S and two points z\, z2. There does not 
exist, in general, an analytic function which together with all its deriva­
tives assumes the values in S at the points z\ and z%. In fact, it exists 
only f or a denumerable set of values of z\—z%. 

THEOREM 5. Let Sk be the set of the first k positive integers, i.e., 
Sfc={l,2,3, • • • , k}. If k>l, then there is no analytic f unction which 
together with all its derivatives maps Sk into itself. 

THEOREM 6. Let {z\, z%, z*\ be such that the imaginary parts of 
zz—zi and zz—z2 are incommensurable, then there is no nonconstant en­
tire function which together with all its derivatives assumes real values at 
z\, £2 and Zz. 

THEOREM 7. Let S be the set of complex numbers having positive real 
part, then there exists a sequence {Zh} having arbitrarily small asymp­
totic density, such that there is no entire function which together with all 
its derivatives assumes values in S at all points of {ZH}. 

THEOREM 8. Let S be a bounded set of complex numbers and \zh} be 
a sequence for which d(z, {zh}) <c log \z\ for some c>0 and all\z\ >2 
then there is no nonconstant analytic function which together with all its 
derivatives assumes values in S at all points of {zn}. 

COROLLARY 3. If the values of an analytic f unction and all its higher 
derivatives at every Gaussian integer form a bounded set of complex num­
bers, then the function is constant. 

4. Indication of proof. 
PROOF OF THEOREM 1. We wish to construct a generalized inter­

polation series 

(5) *•(*) = £ anfKs-O"", 
n=0 t= l 

where the product in each term is finite, each exponent mi, m*, • • • , 
mn is a nondecreasing function of n and w = mi+m2+ • • • -\-mn* 
Thus as n is increased to n+1, there is exactly one mn (possibly 
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Wfc = 0) which is increased to w^+l and we get 
H 

(6) F<*»>(«») = anmh\ Ü (** - *i)m< + *»-i, 

where the Xn-\ involves av with v <n. Thus we can determine the a» 
successively by choosing Fimh)(zh) to be an element of the set S which 
is the nearest to Xn-\. Then we get 

(7) | an | - d(X^S) 

We can now determine the m,as functions of n, so that (5) converges 
uniformly in every circle \z\ ^r. 

PROOF OF THEOREM 2. Exactly analogous to the case of entire 
functions. 

PROOF OF THEOREM 3. By the generalized Borel interpolation there 
exists a function u~u(z), analytic in R such that (1) u'(zh) = l 
(& = 1, 2, • • • ), (2) tt(**)?*tt(*i) f° r k?*h (3) u(Zh)—><*> as «—>oo. We 
construct a generalized interpolation series of the form 

F(Z) = f: an n («w - «(*))*« 

as in the case of Theorem 1. 
PROOF OF LEMMA 1. Without loss of generality, let the two points 

be 0 and SOJ^O, assume that f(z) = ]C"„0 snz
n/n\ then s n £S. If we 

take m large enough, then ƒ(A)(00) G 5 (fe = 0, 1, 2, • • • ) implies that 
Sfc+m-i-i is determined uniquely by the finite sequence {sk, s*+i, • • • , 
Sk+m} and there are numbers p and no such that sn+2> = sn for all 

PROOF OF LEMMA 2. All such functions satisfy linear differential 
equation of bounded order, and the function is uniquely determined 
by the finitely many choices of the initial values from the finite set S. 

PROOF OF LEMMA 3. f(z) satisfies one of the denumerable set of 
linear differential equations with initial values in 5. Each function 
attains values in S only at a denumerable set of points. 

PROOF OF THEOREM 4. Consequence of Lemma 3. 
PROOF OF THEOREM 5. Since Sk is bounded, the function must be 

an entire function and its order must be p ^ l . Since Sk is a set of 
integers, we have p ̂  k > 1 or the function is a polynomial. Since there 
is no such polynomial the contradiction is proved. (For & = 1, there 
is the unique example ƒ (z) = e*~l.) 

PROOF OF THEOREM 6. Let ƒ(*) = 2 ^ . 0 a?* (*-**)* (* = 1, 2, 3) 
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then off are real and f(z) assumes real values on three lines through 
Zk (fe = l, 2, 3) parallel to the real axis. Using the Schwarz reflection 
principle repeatedly, we see that f(z) assumes real values at all z> 

PROOF OF THEOREM 7. The essential fact here is that S forms a 
convex cone and hence a semi-group under addition. Select {ZH} so 
that Im(zh) form a dense set and there are arbitrarily large — Re(^) 
for each Im(s*). Then every f(z) with fM(zh)<ES, n*=Q> 1, 2, • • • , 
A = l, 2, • • • would satisfy Re/(s)>0 for all z which is impossible. 

PROOF OF THEOREM 8. Let \z\ >2 and let Zh be a point for which 
12—Zh\ <c log |z | . Then 

I/«I s £ l * M l |«-*» 17*1 
g i ^ \z~zh\

n/n\ < A | 2 |c. 

Thus, by Liouville's Theorem f(z) is a polynomial, and unless f(z) is 
a constant its values satisfy \f(z) \ ̂ A only on a bounded set and not 
on the whole sequence {Zh}. 

PROOF OF COROLLARIES 1, 2, 3. For Gaussian integers 5, d(z, S) 
^2- 1 / 2 . For rational primes S, d(x, S)<\x\ <«+•> w (e>0). For Gaus­
sian primes S, we have d(z, S) < \ z\ * for some <t> < 1. 
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