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Iteration functions for the approximation of zeros of a polynomial 
P are usually given as explicit functions of P and its derivatives. We 
introduce a class of iteration functions which are themselves con­
structed according to a certain algorithm given below. The construc­
tion of the iteration functions requires only simple polynomial 
manipulation which may be performed on a computer. 

Let P be a real monic polynomial of degree n with distinct zeros 
Pit • • • , Pn and let the dominant zero p\ be real. The theory may be 
extended to multiple zeros, dominant complex zeros, and sub-
dominant zeros. 

Let B{t) be an arbitrary polynomial of degree at most n — 1 with 
B (pi) j*0. Define a sequence of polynomials of degree n — \ by 

G(0, /, B) = B(f), G(X + 1, t, B) = *G(X, t, B) - a0(X)P(/), 

x - o, i , . . . , 

where a0(X) is the leading coefficient of G(X, /, B). From the poly­
nomial G(X, /, JB) = GI(X, t, B), form the polynomial GP(X, /, B) for any 
positive integer p by 

GP(x,/,s)= S [-P]*-1-* . ; ' ' r»(0, 
*-o \p — 1 ~ k)\ 

where Vk(t) is formed by 

Vo(t) - 1, Vk(t) - P'(/)F*-i(0 - ^ vLi(t). 
R 

Define an iteration function for fixed p and X by 

G^i(X, /, 5) 
#,<X, t,B) = t - P(t) , • 

The global nature of the convergence is given by 

THEOREM, i e / /o &£ an arbitrary point in the extended complex plane 
such that hiep*, p3, • • • , pn and let /»+i=#p(X, tit B). Then for all 
sufficiently large but fixed X, the sequence U is defined for all i and U—»pi. 
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REMARK. Since <£P(X, p,*, B) =py, j = 1, 2, • • • , », we have an: 
ALTERNATIVE FORMULATION. Let t0 be an arbitrary point in the 

extended complex plane and let /»+i=<£p(X, ti, B). Then for all suffi­
ciently large but fixed X the sequence ti is defined for all i and ti—*pi 
for some j . 

Observe that the sequence is defined for all i. This should be com­
pared with a sequence generated by, say the Newton-Raphson itera­
tion function where the sequence is not defined at the zeros of P'. 

The asymptotic rate of convergence is given by 

where 

di = 

&,(X, I, B) - pi 
hm = 
i -p» (/ - p\)p 

B(j>i) 

B(PI) 

CP(X, B) = 

P'iPi) 
; M = 

P'iPi) 

C,(X, B), 

n 

*-2 (Pi 

Pi 
= ) X 

P i 

dm 

- PU»-1 

l = 2, 3, 

Hence the order of <£P(X, /, B) is p while the asymptotic error con­
stant (Traub [l, p. 9]) is given by CP(X, B). Observe that 

lim CP(X, B) = 0. 

Results on the character of the convergence are readily available. 
An example is furnished by the following 

THEOREM. Let |pi| > |p21> \PJ\ , i = 3, 4, • • • , n. Choose p and X 
even and B=P'. Let X be sufficiently large. Then if pi>p2, J»ÎPi; if 
Pl<P2, til pi. 

The iteration functions </>p(0t t, 1) are classical. Calculating 
limx_oo <t>p(\ » , B) or limpH>00 <£p(0, 0, 1) are classical noniterative 
methods for approximating the zeros of polynomials. 

The proofs of these and additional results will appear elsewhere. 
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