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Let G denote an associative iï-space with unit (e.g. a topological 
group). We will show that the relations between G and a classifying 
space B Q axe more readily displayed using a geometric analog of the 
resolutions of homological algebra. The analogy is quite sharp, the 
stages of the resolution, whose base is BQ, determine a filtration of 
BQ. The resulting spectral sequence for cohomology is independent 
of the choice of the resolution, it converges to H*(BQ), and its JE2-
term is ExtH(0)(R, R) (i? = ground ring). We thus obtain spectral 
sequences of the Eilenberg-Moore type [5] in a simpler and more 
geometric manner. 

1. Geometric resolutions. We shall restrict ourselves to the cate­
gory of compactly generated spaces. Such a space is Hausdorff and 
each subset which meets every compact set in a closed set is itself 
closed (a£-space in the terminology of Kelley [3, p. 230]). Subspaces 
are usually required to be closed, and to be deformation retracts of 
neighborhoods. 

Let G be an associative iï-space with unit e. A right G-action on a 
space X will be a continuous map XXG—>X with xe = x, x(gig2) 
— (#gi)g2 for all xÇzX, gi, gzÇzG. A space X with a right G-action will 
be called a G-space. A G-space X and a sequence of G-invariant closed 
subspacesXoC-X^iC • • • CXn<Z • • • such t h a t X 0 ? * 0 , X = U£.0 X» 
and X has the weak topology induced by {Xi} will be called a 
filtered G-space. 

1.1. DEFINITION, (a) A filtered G-space X is called acyclic if for 
some point tfoG-X'o, Xn is contractible to XQ in Xn+i for every n. 

(b) A filtered G-space X is called free if, for each n, there exists a 
closed subspace Dn (Xn-iC.DnC.Xn) such that the action mapping 
(Z>n, Z„_i)XG->(Zfl, Xn-i) is a relative homeomorphism. 

(c) A filtered G-space X is called a G-resolution if X is both free 
and acyclic. 

Under the restrictions we have imposed on subspaces, the acyclic-
ity condition implies that X is contractible. 
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1.2. THEOREM. If G is a topological group, any G-resolution X is a 
principal G-bundle over BQ = X/G with action XXG—>X as principal 
map. 

When G is a topological group, Milnor's construction [4], where 
Xn is the join of n+1 copies of G, is a G-resolution. In the general 
case, the existence of a G-resolution is given by the Dold-Lashof con­
struction [2]. 

There is also a comparison theorem. Let G, G' be iî-spaces, <£: G 
—>G' a morphism, X, X' filtered G, G'-spaces. An extension «Ê' of <3> 
is a map * ' : X-*X' with $ ' ( I n ) CXn ' and &(xg)=$'(x)$(g). If 
$>', $>" are two extensions of <ï>, a homotopy h will be a map h: XXI 
-±X' with fc0=3>', h=$", h(XnXl) CIn+i, and h(xg, t) = h(x, t)$(g). 

1.3. MAPPING THEOREM. If * : G-*G' is a morphism, X a free filtered 
G-space, X' an acyclic filtered G'-space, then <£ has an extension $ ' : 
X-+X'. Furthermore, any two such extensions are homotopic. 

Thus in particular, for any two resolutions X, X' of G there exists 
an equivariant /A: X—*Xr, unique up to equivariant homotopy. 

We define the product of two filtered spaces X, X1 to be the prod­
uct space XXX' filtered by (XXXf)n = \Jto XiXXn^. 

1.4. THEOREM. If X is a G-resolution and X1 a Gr-resolution, then 
XXX1 is a GXG'-resolution. 

2. The spectral sequence. When X is a G-resolution, let B=X/G 
denote the decomposition space by maximal orbits, let p: X—>B be 
the projection and Bn = p(Xn). If R is a coefficient ring, the filtration 
{Bn} of B determines two spectral sequences, the homology spectral 
sequence E*(B, R) = {Er, dr} and the cohomology spectral sequence 
E*(B,R) = {Er,d'}. 

2.1. THEOREM, (a) The spectral sequences £*, E* are functors from 
the category of H-spaces and continuous morphisms to the category of 
bigraded spectral sequences. (We regard all spectral sequences as be­
ginning with E2, E2.) 

(b) If the homology algebra H(G)=H(G; R) is R-free, then as a 
bigraded R-module 

E2 ^ T o r n ( G ) ^ R ^ E2 s ExtH(G)(R, R). 

(c) E*=*H{B ; R). IfR is compact or H(G) is free then E*=*H*(B ; R). 

Proposition (a) follows from 1.3, (c) is true in any filtered space, 
and (b) is proved using the Milnor-Dold-Lashof construction, in fact 
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the i^-term in this case is precisely the bar resolution of R over the 
algebra H(G). 

In order to deepen these results to include products, we develop 
the theory of X-products for the spectral sequences of filtered spaces 
X,Y. These are natural transformations /x: Er(X) ® Er(Y) 
- > £ r ( l X Y), v. Er(X) ®Er(Y)-*Er(XX Y) which behave nicely with 
respect to differentials. They are isomorphisms when R is a field and 
Ei(X) is of finite type. 

The diagonal morphism A: G-+GXG induces, by 2.1(a), a mapping 
of the cohomology spectral sequences A*: Er(BQXBo)-^Er(Bo)> 
Composing A* with v (where X=Y=BG) gives the multiplication in 
Er. 

2.2. THEOREM. With respect to this multiplication, Er(Bo) is a com-
mutative, associative, bigraded, differential algebra with unit. The multi­
plication on Er+i is induced by that on Er. The multiplications commute 
with the convergence 2.1 (c). When H(G) is R-free, the second isomorphism 
of 2.1(b) preserves products. 

When R is a field, the composition JLT^A* defines a co-algebra struc­
ture in the homology spectral sequence having dual properties. 

3. Co-algebra structure. We assume in this section that R is a 
field and H(G) is of finite type. When G is commutative the multi­
plication m: GXG—>G is also a morphism. Then the composition w*/x 
gives an algebra structure on £*, and v~lm* a co-algebra structure in 
E*. Actually the same is true if G is the loop space of an H-space. 
This yields 

3.1. THEOREM. If G is commutative or the loop space of an H-space, 
then Er, E

r are bicommutative, biassociative, differential, bigraded Hopf 
algebras with (Er, dr) the dual algebra to (Er, dr). The Hopf algebra 
structure on E% = ExtH(G)(R, R) is the natural one arising from the Hopf 
algebra structure on H(G). Moreover if G is connected and R is perfect, 
then Er is primitively generated on elements of bi-degree (1, q), (2, qf), 
and dr = 0 except for r = pk - 1 or 2pk -1 where p = Char R.IfG = Q(H), 
H homotopy associative, then EW^H*(B; R) as an algebra. 

Actually one can give an explicit description of Er+i in terms of 
Er and dr(x1'Q), dr(x2>q'), where x1**, x2*q' are primitive generators. 

4. Applications. Moore pointed out [5] that his spectral sequence 
gives an easy proof of the theorem of Borel which states: If H(G) is 
an exterior algebra with generators of odd dimensions and is R-free, 
then H*(BQ) is a polynomial algebra on corresponding generators of one 
higher dimension. Moore argues that a brief computation shows that 
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the £2-term, Ext#(G)CR, R), is just such a polynomial algebra. Then 
all terms of £2 of odd total degree are zero. Hence every dr = 0, so 
£2=-Eoo- Since E* is a polynomial algebra, it is algebraically free; and 
therefore H*(BG) «£«> as an algebra. 

An Eilenberg-MacLane space of type (w, n) can be realized by a 
commutative topological group G, and its BQ is of type (w, n+1). 
Consequently H(w, n) and H*(w, n+1) are connected by a spectral 
sequence of Hopf algebras Er(Bo). 

4.1. THEOREM. If Gis of type (T, n), T is a finitely generated abelian 
group, and R = ZP where p is a prime, then the spectral sequence col­
lapses 

ExtH((?)(Zp, Zp) « £ 2 = £00 « B*(BQ). 

This implies that H*(TT, n\ Zp) is a free commutative algebra for 
every n. In fact an algorithm is obtained for computing H*(ir, n\ Zp) 
as a primitively generated Hopf algebra over the algebra of reduced 
pth powers. These results confirm and amplify results of H. Cartan. 

For another application, let K be a compact, simply-connected Lie 
group, and let G be the loop space of K. Using Bott's result [l] that 
H(G; Z) is torsion free, we obtain 

4.2. THEOREM, (a) If p>5, the spectral sequence collapses 

ExtH(G)(Zp, Zp) « £ 2 = £00 « H*(K; Zp) « A(*i, • • • , xr) 

where xi, • • • , xr are generators of the dimensions of the primitive in­
variants of K. In particular K has no p-torsion, and H*(K; Zp) 
~H*(K;Z)®ZP. 

(b) If p = 3 or 5, there is at most one nonzero differential, namely, 
d2p~l. Moreover H*(K; Zp) and H*(G; Zp) can be constructed explicitly 
from the Betti numbers of K and the dimensions of the kernels of the 
maps x-*xv and x—>xp* where xÇzH2(G; Zp). 

(c) For anyp>2, we have u* = 0for all uEH*(K; ZP). 
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