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Let G denote an associative H-space with unit (e.g. a topological
group). We will show that the relations between G and a classifying
space B ¢ are more readily displayed using a geometric analog of the
resolutions of homological algebra. The analogy is quite sharp, the
stages of the resolution, whose base is Bg, determine a filtration of
Bg. The resulting spectral sequence for cohomology is independent
of the choice of the resolution, it converges to H*(Bg), and its E,-
term is Extm(e)(R, R) (R=ground ring). We thus obtain spectral
sequences of the Eilenberg-Moore type [5] in a simpler and more
geometric manner.

1. Geometric resolutions. We shall restrict ourselves to the cate-
gory of compactly generated spaces. Such a space is Hausdorff and
each subset which meets every compact set in a closed set is itself
closed (a k-space in the terminology of Kelley [3, p. 230]). Subspaces
are usually required to be closed, and to be deformation retracts of
neighborhoods.

Let G be an associative H-space with unit e. A right G-action on a
space X will be a continuous map X XG—X with xe=x, x(g1gz)
= (xg1)g. for all xE X, g1, 22EG. A space X with aright G-action will
be called a G-space. A G-space X and a sequence of G-invariant closed
subspaces XoCX1C - -+ CX.C - - rsuch that X, = &, X =U2, X,
and X has the weak topology induced by {X;} will be called a
filtered G-space.

1.1. DEFINITION. (a) A filtered G-space X is called acyclic if for
some point x,& X, X, is contractible to x¢ in X,4, for every n.

(b) A filtered G-space X is called free if, for each #, there exists a
closed subspace D, (X,-1CD,CX,) such that the action mapping
(Dny X91) XG—(X,, X4-1) is a relative homeomorphism.

(c) A filtered G-space X is called a G-resolution if X is both free
and acyclic.

Under the restrictions we have imposed on subspaces, the acyclic-
ity condition implies that X is contractible.

1 This work was partially supported by the National Science Foundation under
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1.2. THEOREM. If G is a topological group, any G-resolution X is a
principal G-bundle over Be=X/G with action X XG—X as principal
map.

When G is a topological group, Milnor’s construction [4], where
X, is the join of #n+41 copies of G, is a G-resolution. In the general
case, the existence of a G-resolution is given by the Dold-Lashof con-
struction [2].

There is also a comparison theorem. Let G, G’ be H-spaces, ®: G
—G’ a morphism, X, X’ filtered G, G’'-spaces. An extension @' of ®
is a map ¥': X—X’ with & (X,) CX,/ and ¥'(xg) =9'(x)®(g). If
P’, ' are two extensions of ®, a homotopy h will be a map h: X XTI
—X' with hy=%', by =", H(X . XI) CX /41, and h(xg, t) =h(x, )P(g).

1.3. MAPPING THEOREM. If ®: G—G’ is a morphism, X a free filtered
G-space, X' an acyclic filtered G'-space, then ® has an extension ®':
X—X'. Furthermore, any two such extensions are homotopic.

Thus in particular, for any two resolutions X, X’ of G there exists
an equivariant u: X—X’, unique up to equivariant homotopy.

We define the product of two filtered spaces X, X’ to be the prod-
uct space X X X’ filtered by (X XX"),=Up o X:X X

1.4. TaeoreM. If X is a G-resolution and X' a G'-resolution, then
XXX’ is a GXG -resolution.

2. The spectral sequence. When X is a G-resolution, let B=X/G
denote the decomposition space by maximal orbits, let p: X—B be
the projection and B, =$(X,). If R is a coefficient ring, the filtration
{B.} of B determines two spectral sequences, the homology spectral
sequence Ex(B, R)={E", d,} and the cohomology spectral sequence
E*(B, R)={E,, d"}.

2.1. THEOREM. (a) The spectral sequences Ey, E* are functors from
the category of H-spaces and continuous morphisms to the category of
bigraded spectral sequences. (We regard all spectral sequences as be-
ginning with E?, E,.)

(b) If the homology algebra H(G)=H(G; R) 4s R-free, then as a
bigraded R-module

E*= Tor#@ (R, R), E;=Extze(R, R).
(c) Ex=H(B;R). If Ris compact or H(G) is free then E*=H*(B; R).

Proposition (a) follows from 1.3, (c) is true in any filtered space,
and (b) is proved using the Milnor-Dold-Lashof construction, in fact
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the El-term in this case is precisely the bar resolution of R over the
algebra H(G).

In order to deepen these results to include products, we develop
the theory of X-products for the spectral sequences of filtered spaces
X,Y. These are natural transformations u: E7(X) ® E"(Y)
—E"(XXY),v: E(X)®E,(Y)—E,(X X Y) which behave nicely with
respect to differentials. They are isomorphisms when R is a field and
E(X) is of finite type.

The diagonal morphism A: G—G X G induces, by 2.1(a), a mapping
of the cohomology spectral sequences A*: E,(BgXBg)—E.(Bg).
Composing A* with » (where X = Y= Bg) gives the multiplication in
E,.

2.2. THEOREM. With respect to this multiplication, E.(Bg) is a com-
mutative, associative, bigraded, differential algebra with unit. The multi-
plication on E,1 is induced by that on E,. The multiplications commute
with the convergence 2.1(c). When H(G) is R-free, the second isomorphism
of 2.1(b) preserves products.

When R is a field, the composition u—'As defines a co-algebra struc-
ture in the homology spectral sequence having dual properties.

3. Co-algebra structure. We assume in this section that R is a
field and H(G) is of finite type. When G is commutative the multi-
plication m: GXG—G is also a morphism. Then the composition mxu
gives an algebra structure on Ey, and »~'m* a co-algebra structure in
E*. Actually the same is true if G is the loop space of an H-space.
This yields

3.1. THEOREM. If G is commutative or the loop space of an H-space,
then E,, E* are bicommutative, biassociative, differential, bigraded Hopf
algebras with (E, d,) the dual algebra to (E,, d7). The Hopf algebra
structure on E;=Extn(a)(R, R) is the natural one arising from the Hopf
algebra structure on H(G). Moreover if G is connected and R is perfect,
then E, is primitively generated on elements of bi-degree (1, q), (2, ¢'),
and d*=0 except for r =p*—1 or 2p*—1 where p =Char R. If G=Q(H),
H homotopy associative, then E.,~H*(B; R) as an algebra.

Actually one can give an explicit description of E,;; in terms of
E, and dr(x19), d"(x*¢), where x'-9, x2:¢' are primitive generators.

4. Applications. Moore pointed out [5] that his spectral sequence
gives an easy proof of the theorem of Borel which states: If H(G) s
an exterior algebra with generators of odd dimemsions and is R-free,
then H*(Bg) is a polynomial algebra on corresponding generators of one
higher dimension. Moore argues that a brief computation shows that
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the E,-term, Extgy(g)(R, R), is just such a polynomial algebra. Then
all terms of E; of odd total degree are zero. Hence every d"=0, so
E,=E,. Since E,, is a polynomial algebra, it is algebraically free; and
therefore H*(Bg) = E, as an algebra.

An Eilenberg-MacLane space of type (w, #) can be realized by a
commutative topological group G, and its Bg is of type (mw, n+1).
Consequently H(r, n) and H*(w, n+1) are connected by a spectral
sequence of Hopf algebras E,(Bg).

4.1. THEOREM. If G is of type (w, n), ™ is a finitely generated abelian
group, and R=_Z, where p is a prime, then the spectral sequence col-
lapses

Extg(a)(z,,, Z,) ~ Ey = E, = H*(Bg).

This implies that H*(w, n; Z,) is a free commutative algebra for
every n. In fact an algorithm is obtained for computing H*(w, »n; Z,)
as a primitively generated Hopf algebra over the algebra of reduced
pth powers. These results confirm and amplify results of H. Cartan.

For another application, let K be a compact, simply-connected Lie
group, and let G be the loop space of K. Using Bott’s result [1] that
H(G; Z) is torsion free, we obtain

4.2. THEOREM. (a) If p>5, the spectral sequence collapses
Extn6)(Zp, Zp) = Ea= Eo = H*(K;Z,) = A(%1, * * +, %)

where x1, « + -, X, are generators of the dimensions of the primitive in-
variants of K. In particular K has no p-torsion, and H*(K; Z,)
~H*K; 2)®Z,.

(b) If p=3 or 5, there is at most one nonzero differential, namely,
d*-1, Moreover H*(K ; Z,) and Hy(G; Z,) can be constructed explicitly
from the Betti numbers of K and the dimensions of the kernels of the
maps x—x? and x—x?" where xC H*(G; Z,).

(c) For any p>2, we have u»=0 for all u€ H*(K; Z,).
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