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With every nonempty ordinary graph G there is associated a graph 
L(G), called the line-graph of G, whose points are in one-to-one cor­
respondence with the lines of G and such that two points are adjacent 
in L(G) if and only if the corresponding lines of G are adjacent. By 
L2(G), we shall mean L(L(G)); and, in general, Lh(G) will denote 
L(LM(G)) for k^l, where Ll(G) and L\G) stand for L(G) and G, 
respectively. The graphs L(G), L?(G), L3(G), etc. are referred to as 
the repeated line-graphs of G. A complete cycle (or hamiltonian cycle) 
in a (connected) graph G is a cycle containing all the points of G. 
The purpose of this note is to outline a proof of the following result, 
a complete proof of which will be published elsewhere. 

THEOREM 1. If G is a nontrivial connected graph of order p {having 
p points), and if G is not a path, then Ln(G) contains a complete cycle 
for all n^p — 3. Furthermore, the number p — 3 cannot, in general, be 
improved. 

A graph G having q lines, where q à 3, is called sequential if the lines 
of G can be ordered a S XQ, X\, X2, * * * I Xq—1, Xq XQ SO that Xi and 
Xi+i, i = 0, 1, • • • , q — 1, are adjacent. The next theorem follows 
immediately. 

THEOREM 2. A necessary and sufficient condition that the line-graph 
L(G) of a graph G contain a complete cycle is that G be a sequential 
graph. 

If a graph G contains a complete cycle C, then the lines of C can be 
arranged in a cyclic fashion. By an appropriate "interspersing" of the 
lines not on C (if any) among the lines which are on C, we can pro­
duce an ordering of all the lines of G as needed to show that G is 
sequential. This fact coupled with Theorem 2 gives the next result. 

THEOREM 3. If a graph G contains a complete cycle, then L(G) also 
contains a complete cycle. 

COROLLARY. If a graph G contains a complete cycle, then Ln(G) con­
tains a complete cycle for alln^l. 

1 This research is part of a doctoral thesis written under the direction of Professor 
E. A. Nordhaus of Michigan State University. 
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The following two lemmas can be quickly established. 

LEMMA I. If a graph G has a cycle C with the property that every 
line of G is incident with at least one point of C, then L(G) contains a 
complete cycle. 

LEMMA 2. Let G be a graph consisting of a cycle C and its diagonals 
(a diagonal of C being a line which is not on C bui which is incident 
with two points of C) and m paths Pi, P2, • • • , P«, where (i) each 
path has precisely one endpoint in common with C and (ii) for i^j, 
Pi and Pj are disjoint except possibly having an endpoint in common if 
this point is also common to C. Then, if the maximum of the lengths of 
the Pi is M, Ln(G) contains a complete cycle for all n^M. 

The proof of Theorem 1 is by induction on p with the graphs having 
order 3, 4, or 5 treated individually. It is assumed then that for all 
connected graphs G' which are not paths and which have order s, 
where s<p and p^6, Ln(G') contains a complete cycle for each 
n*zs — 3. The proof involves showing that if G is a graph which is not 
a path and which has order p, then LP~A(G) is a sequential graph so 
that LP~8(G) contains a complete cycle (by Theorem 2) and Ln(G) 
contains a complete cycle for all wè p — S (by the corollary to Theo­
rem 3). 

If G is a cycle, the result follows directly, so without losing general­
ity, we assume that G contains a point v having degree 3 or more. Let 
H denote the connected star subgraph whose lines are all those in­
cident with v, and let Q denote the subgraph whose point set consists 
of all the points of G different from v and whose lines are all those 
which are in G but not in H. H and Q have deg v points in common 
but are line disjoint. We denote the components of Q by Gi, G2, 
• • • , G*. 

L(H) is a complete subgraph of L(G) and so has a cycle containing 
all the points of L(H). If Ji denotes L(H) plus all those lines in L(G) 
incident with one point of L(H), then, by Lemma 1, H\ = L(Ji) has 
a cycle containing all the points of Hi. We let J2 denote L(Hi) plus 
any lines of L2(G) incident with a point of L(Hi) and let H2 = L(J%). 
Once again, by Lemma 1, H2 has a cycle containing all the points of 
H2. Ji and Hif i = 3, 4, • • •, are defined analogously, and each Hi has 
a cycle containing all the points of Hi. 

Two cases are considered: (1) All the G» are paths or isolated points, 
and (2) there is at least one G,- different from a path or an isolated 
point. In the first case, it follows, with the aid of Lemma 2, that 
LP~4(G) contains a complete cycle so that LP~3(G) contains such a 
cycle also. 
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In the second case, we assume that the first / components, l^t^k, 
of Gi, G2, • • • , Gh are not paths or isolated points. Clearly, each of 
the components Gi, G2, • • •, Gt has a t least 3 points. If t<k, the 
paths (or isolated points) Gt+i, • • • , G& have orders at most £—4, 
and it is easily seen that for these components, L3?~4(Gt) does not 
exist. LV~\G) can thus be expressed as the pairwise line disjoint sum 
of the graphs 7P_4, Lp"4(Gi), I>-4(G2), • • , I>-4(G,), where each of 
the graphs I>-4(G t) , i = l, 2, • • • , t, has a cycle containing all the 
points of Z>-4(Gt) by the inductive hypothesis. 

Since p^6, it can be shown that for each i = l, 2, • • • , t, there is 
a point Ui in iJp_4 adjacent to both endpoints of a line in Lp~A(Gi). 
Using this result, we produce a suitable ordering of the lines of 
LP~*(G) thereby showing it to be a sequential graph. 

Theorem 1 permits us to make the following definition. 
DEFINITION. Let G be a nontrivial connected graph which is differ­

ent from a path. The hamiltonian index of G, denoted by h(G), is the 
smallest nonnegative integer n such that Ln(G) contains a complete 
cycle. 

I t now follows immediately that a graph contains a hamiltonian 
cycle if and only if its hamiltonian index is zero. Theorem 1 may now 
be restated in the following way. If G is a nontrivial connected graph 
of order p which is not a path, then h(G) exists and h(G) ^p — 3.To 
show tha t the bound given in Theorem 1 cannot be improved, we note 
that for every p^3, there are graphs whose hamiltonian indices are 
p — 3. The graphs G\ and G2 shown in Figure 1 have hamiltonian 
indices equal to p — 3. 
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