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With every nonempty ordinary graph G there is associated a graph
L(G), called the line-graph of G, whose points are in one-to-one cor-
respondence with the lines of G and such that two points are adjacent
in L(G) if and only if the corresponding lines of G are adjacent. By
L*(G), we shall mean L(L(G)); and, in general, L*(G) will denote
L(L*1(G)) for k=1, where L}(G) and L%G) stand for L(G) and G,
respectively. The graphs L(G), L*(G), L¥G), etc. are referred to as
the repeated line-graphs of G. A complete cycle (or hamiltonian cycle)
in a (connected) graph G is a cycle containing all the points of G.
The purpose of this note is to outline a proof of the following result,
a complete proof of which will be published elsewhere.

THEOREM 1. If G is a nontrivial connected graph of order p (having
p points), and if G is not a path, then L*(G) contains a complete cycle
for all n=p—3. Furthermore, the number p—3 cannot, in general, be
improved.

A graph G having g lines, where ¢ = 3, is called sequential if the lines

of G can be ordered as x, x1, %2, * * *, Xg—1, X,=%o S0 that x; and
Xip1, 2=0, 1, -+ -, ¢g—1, are adjacent. The next theorem follows
immediately.

THEOREM 2. A necessary and sufficient condition that the line-graph
L(G) of a graph G contain a complete cycle is that G be a sequential
graph.

If a graph G contains a complete cycle C, then the lines of C can be
arranged in a cyclic fashion. By an appropriate “interspersing” of the
lines not on C (if any) among the lines which are on C, we can pro-
duce an ordering of all the lines of G as needed to show that G is
sequential. This fact coupled with Theorem 2 gives the next result.

THEOREM 3. If a graph G contains a complete cycle, then L(G) also
contains a complete cycle.

CoROLLARY. If a graph G contains a complete cycle, then L*(G) con-
tains a complete cycle for all n=1.

1 This research is part of a doctoral thesis written under the direction of Professor
E. A. Nordhaus of Michigan State University.
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The following two lemmas can be quickly established.

LeEMmMA 1. If a graph G has a cycle C with the property that every
line of G is incident with at least one point of C, then L(G) contains a
complete cycle.

LEMMA 2. Let G be a graph consisting of a cycle C and its diagonals
(a diagonal of C being a line which is not on C but which is incident
with two points of C) and m paths P1, Pa, + + -, Pn, where (i) each
path has precisely one endpoint in common with C and (ii) for 157,
P;and P;are disjoint except possibly having an endpoint in common if
this point is also common to C. Then, if the maximum of the lengths of
the P; is M, L~(G) contains a complete cycle for all n= M.

The proof of Theorem 1 is by induction on p with the graphs having
order 3, 4, or 5 treated individually. It is assumed then that for all
connected graphs G’ which are not paths and which have order s,
where s<p and p=6, L*(G') contains a complete cycle for each
n =s—3. The proof involves showing that if G is a graph which is not
a path and which has order p, then L*—4(G) is a sequential graph so
that L#~3(G) contains a complete cycle (by Theorem 2) and L*(G)
contains a complete cycle for all n=p—3 (by the corollary to Theo-
rem 3).

If G is a cycle, the result follows directly, so without losing general-
ity, we assume that G contains a point v having degree 3 or more. Let
H denote the connected star subgraph whose lines are all those in-
cident with », and let Q denote the subgraph whose point set consists
of all the points of G different from v and whose lines are all those
which are in G but not in H. H and Q have deg v points in common
but are line disjoint. We denote the components of Q by G, G,

«o o, G

L(H) is a complete subgraph of L(G) and so has a cycle containing
all the points of L(H). If J; denotes L(H) plus all those lines in L(G)
incident with one point of L(H), then, by Lemma 1, Hy=L(J1) has
a cycle containing all the points of H;. We let J; denote L(H:) plus
any lines of L%(G) incident with a point of L(H,) and let Hy=L(J5).
Once again, by Lemma 1, H; has a cycle containing all the points of
H,. J;and H;,72=3,4, - - -, are defined analogously, and each H; has
a cycle containing all the points of H..

Two cases are considered: (1) All the G; are paths or isolated points,
and (2) there is at least one G; different from a path or an isolated
point. In the first case, it follows, with the aid of Lemma 2, that
L?»4(G) contains a complete cycle so that L#*—3(G) contains such a
cycle also.
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In the second case, we assume that the first £ components, 1 <t <k,
of Gy, Gq, - - -, Gy are not paths or isolated points. Clearly, each of
the components Gi, Ge, - - -, G; has at least 3 points. If t<k, the
paths (or isolated points) G, + - -, Gi have orders at most p—4,
and it is easily seen that for these components, L?~4(G;) does not
exist. L*—4(G) can thus be expressed as the pairwise line disjoint sum
of the graphs J,_4, L*~4(Gy), L*~4(G»), + - - , L*"*(G;), where each of
the graphs L*4(G,), 1=1, 2, - - -, ¢, has a cycle containing all the
points of L?~4(G;) by the inductive hypothesis.

Since p =6, it can be shown that for each =1, 2, - - -, ¢, there is
a point %; in H,_, adjacent to both endpoints of a line in L*~4(G,).
Using this result, we produce a suitable ordering of the lines of
Lr»=4(G) thereby showing it to be a sequential graph.

Theorem 1 permits us to make the following definition.

DEFINITION. Let G be a nontrivial connected graph which is differ-
ent from a path. The hamilionian index of G, denoted by %(G), is the
smallest nonnegative integer # such that L*(G) contains a complete
cycle.

It now follows immediately that a graph contains a hamiltonian
cycle if and only if its hamiltonian index is zero. Theorem 1 may now
be restated in the following way. If G is a nontrivial connected graph
of order p which is not a path, then i(G) exists and #(G) <p—3. To
show that the bound given in Theorem 1 cannot be improved, we note
that for every p = 3, there are graphs whose hamiltonian indices are
p—3. The graphs G; and G. shown in Figure 1 have hamiltonian
indices equal to p—3.
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