THE EXISTENCE OF COMPLETE CYCLES IN REPEATED LINE-GRAPHS¹

BY GARY CHARTRAND

Communicated by V. Klee, March 24, 1965

With every nonempty ordinary graph G there is associated a graph L(G), called the line-graph of G, whose points are in one-to-one correspondence with the lines of G and such that two points are adjacent in L(G) if and only if the corresponding lines of G are adjacent. By $L^2(G)$, we shall mean L(L(G)); and, in general, $L^k(G)$ will denote $L(L^{k-1}(G))$ for $k \ge 1$, where $L^1(G)$ and $L^0(G)$ stand for L(G) and G, respectively. The graphs L(G), $L^2(G)$, $L^3(G)$, etc. are referred to as the repeated line-graphs of G. A complete cycle (or hamiltonian cycle) in a (connected) graph G is a cycle containing all the points of G. The purpose of this note is to outline a proof of the following result, a complete proof of which will be published elsewhere.

THEOREM 1. If G is a nontrivial connected graph of order p (having p points), and if G is not a path, then $L^n(G)$ contains a complete cycle for all $n \ge p-3$. Furthermore, the number p-3 cannot, in general, be improved.

A graph G having q lines, where $q \ge 3$, is called sequential if the lines of G can be ordered as x_0 , x_1 , x_2 , \cdots , x_{q-1} , $x_q = x_0$ so that x_i and x_{i+1} , $i=0, 1, \cdots, q-1$, are adjacent. The next theorem follows immediately.

THEOREM 2. A necessary and sufficient condition that the line-graph L(G) of a graph G contain a complete cycle is that G be a sequential graph.

If a graph G contains a complete cycle C, then the lines of C can be arranged in a cyclic fashion. By an appropriate "interspersing" of the lines not on C (if any) among the lines which are on C, we can produce an ordering of all the lines of G as needed to show that G is sequential. This fact coupled with Theorem 2 gives the next result.

THEOREM 3. If a graph G contains a complete cycle, then L(G) also contains a complete cycle.

COROLLARY. If a graph G contains a complete cycle, then $L^n(G)$ contains a complete cycle for all $n \ge 1$.

¹ This research is part of a doctoral thesis written under the direction of Professor E. A. Nordhaus of Michigan State University.

The following two lemmas can be quickly established.

LEMMA 1. If a graph G has a cycle C with the property that every line of G is incident with at least one point of C, then L(G) contains a complete cycle.

LEMMA 2. Let G be a graph consisting of a cycle C and its diagonals (a diagonal of C being a line which is not on C but which is incident with two points of C) and m paths P_1, P_2, \dots, P_m , where (i) each path has precisely one endpoint in common with C and (ii) for $i \neq j$, P_i and P_j are disjoint except possibly having an endpoint in common if this point is also common to C. Then, if the maximum of the lengths of the P_i is M, $L^n(G)$ contains a complete cycle for all $n \geq M$.

The proof of Theorem 1 is by induction on p with the graphs having order 3, 4, or 5 treated individually. It is assumed then that for all connected graphs G' which are not paths and which have order s, where s < p and $p \ge 6$, $L^n(G')$ contains a complete cycle for each $n \ge s-3$. The proof involves showing that if G is a graph which is not a path and which has order p, then $L^{p-4}(G)$ is a sequential graph so that $L^{p-3}(G)$ contains a complete cycle (by Theorem 2) and $L^n(G)$ contains a complete cycle for all $n \ge p-3$ (by the corollary to Theorem 3).

If G is a cycle, the result follows directly, so without losing generality, we assume that G contains a point v having degree 3 or more. Let H denote the connected star subgraph whose lines are all those incident with v, and let Q denote the subgraph whose point set consists of all the points of G different from v and whose lines are all those which are in G but not in H. H and Q have deg v points in common but are line disjoint. We denote the components of Q by G_1 , G_2 , \cdots , G_k .

L(H) is a complete subgraph of L(G) and so has a cycle containing all the points of L(H). If J_1 denotes L(H) plus all those lines in L(G) incident with one point of L(H), then, by Lemma 1, $H_1 = L(J_1)$ has a cycle containing all the points of H_1 . We let J_2 denote $L(H_1)$ plus any lines of $L^2(G)$ incident with a point of $L(H_1)$ and let $H_2 = L(J_2)$. Once again, by Lemma 1, H_2 has a cycle containing all the points of H_2 . J_4 and J_4 , J_4 are defined analogously, and each J_4 has a cycle containing all the points of J_4 .

Two cases are considered: (1) All the G_i are paths or isolated points, and (2) there is at least one G_i different from a path or an isolated point. In the first case, it follows, with the aid of Lemma 2, that $L^{p-4}(G)$ contains a complete cycle so that $L^{p-3}(G)$ contains such a cycle also.

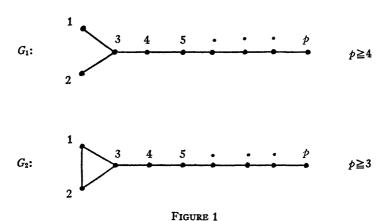
In the second case, we assume that the first t components, $1 \le t \le k$, of G_1, G_2, \dots, G_k are not paths or isolated points. Clearly, each of the components G_1, G_2, \dots, G_t has at least 3 points. If t < k, the paths (or isolated points) G_{t+1}, \dots, G_k have orders at most p-4, and it is easily seen that for these components, $L^{p-4}(G_i)$ does not exist. $L^{p-4}(G)$ can thus be expressed as the pairwise line disjoint sum of the graphs $J_{p-4}, L^{p-4}(G_1), L^{p-4}(G_2), \dots, L^{p-4}(G_t)$, where each of the graphs $L^{p-4}(G_i)$, $i=1, 2, \dots, t$, has a cycle containing all the points of $L^{p-4}(G_i)$ by the inductive hypothesis.

Since $p \ge 6$, it can be shown that for each $i = 1, 2, \dots, t$, there is a point u_i in H_{p-4} adjacent to both endpoints of a line in $L^{p-4}(G_i)$. Using this result, we produce a suitable ordering of the lines of $L^{p-4}(G)$ thereby showing it to be a sequential graph.

Theorem 1 permits us to make the following definition.

DEFINITION. Let G be a nontrivial connected graph which is different from a path. The *hamiltonian index* of G, denoted by h(G), is the smallest nonnegative integer n such that $L^n(G)$ contains a complete cycle.

It now follows immediately that a graph contains a hamiltonian cycle if and only if its hamiltonian index is zero. Theorem 1 may now be restated in the following way. If G is a nontrivial connected graph of order p which is not a path, then h(G) exists and $h(G) \leq p-3$. To show that the bound given in Theorem 1 cannot be improved, we note that for every $p \geq 3$, there are graphs whose hamiltonian indices are p-3. The graphs G_1 and G_2 shown in Figure 1 have hamiltonian indices equal to p-3.



WESTERN MICHIGAN UNIVERSITY