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Liapunov functions have been used to characterize the stability, 
the asymptotic stability, and the boundedness of solutions of ordinary 
differential equations. The purpose of this announcement is to char­
acterize the continuability of solutions. Details and applications will 
appear elsewhere [ó]. 

Consider the equation 

(E) x'=f(t,x) (' = -̂ )> 

where x and ƒ belong to En, f(t, 0) = 0 for t^O, and ƒ is continuous 
and locally Lipschitzian on D, D= {(/, x): t^O, # £ E n } . For (/0, x0) 
£Z?, let F(t, to, x0) be that solution of (E) for which F(t0, to, x0) =x0 . 

DEFINITION 1. V(t, x) is a Liapunov function f or (E) if Vit, x) is 
non-negative, continuous, and locally Lipschitzian on D, if V(t, 0 ) = 0 
for t^O, and V'(t, x) ^ 0 , where 

V'(t, x) =l im supA.o+ h~l[V(t-\-h, x+hf(t, x)) - V(t, x)]. 

DEFINITION 2. V(t, x) is mildly unbounded if for every T>0, 
V(t, x)—»+ oo as | x\ —>oo uniformly in t, O^t^ T. 

THEOREM. For ƒ as described, the solution F(t, t0, x0) of (E) can be 
continued to [t0, oo) for every {to, Xo)Ç=.D if and only if there exists on 
D a mildly unbounded Liapunov f unction V{t, x) for (E). Furthermore, 
this f unction is positive definite if and only if the zero solution of (E) is 
stable. 

SKETCH OF PROOF. Assume such a function exists. If for some {to, x0) 
£Z>, F(t, to, x0) cannot be continued to [t0, °°), there exists T>t0 

such that | F{t, t0, x0)\ —><*> as t-*T—0. Since F i s mildly unbounded, 
V{s, F(T, t0, Xo))—>+oo as T—>r—0 uniformly on O^s^T, hence, 
V{r, F(j, to, Xo))-*+ <*>, contradicting V'{t, x) ^ 0 . 

Conversely, suppose all solutions can be continued. For each posi­
tive integer m, let #m(x) be a real-valued C1 function on En such that 

ƒ1 if | x | ^ m, 

* m ( X > = \ 0 if I x\ ^ f f l + 1 , 

and consider 
1 Partially supported by NSF Grant G-24335. 
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(E*) *' = *.(*)ƒ(', *), 

whose solution we denote by Fm(t, /0» #o), which exists on [0, <*>) for 
every (/0, x0)Ç:D. Define 

Vm(f, x) = | Fm(0, t,x)\. 

It can be shown that for each mt Vm(t, x) is a Liapunov function with 
respect to the original equation (E). Define 

V(t, x) = lim Vm(t, %). 

Then F is a Liapunov function, and it can also be shown that V is 
mildly unbounded. 

If the zero solution of (E) is stable, then, near # = 0, we may take 
V(t, x) = Vm(t, x) for some m, and it follows by familiar arguments 
(see [4]) that Vm is positive definite. Conversely, if V is positive 
definite, the stability follows by one of Liapunov's original theorems 
[5], completing the sketch. 

This result can be used to generalize some of the so-called asymp-
totic-stability-in-the-large theorems, where a V is mildly unbounded" 
replaces the statement " F i s infinitely large [4]" or " F i s radially un­
bounded [3],* which both mean that F(/, x)—>+ 00 as \x\—»<*> uni­
formly in t, 0 ^ / < 00. 
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