STRUCTURE THEOREM FOR COMMUTATORS OF OPERATORS

BY ARLEN BROWN AND CARL PEARCY

Communicated by P. R. Halmos, July 13, 1964

If \mathfrak{K} is a separable (complex) Hilbert space, and A is a (bounded, linear) operator on \mathfrak{K} , then A is a commutator if there exist operators B and C on \mathfrak{K} such that A = BC - CB. It was shown by Wintner [8] and also by Wielandt [7] that no nonzero scalar multiple of the identity operator I on \mathfrak{K} is a commutator, and this was improved by Halmos [5] who showed that no operator of the form $\lambda I + C$ is a commutator, where $\lambda \neq 0$ and C is a compact operator. The purpose of this note is to announce the following theorem and give some indication of its proof. Details of the results described below will appear elsewhere [2].

THEOREM. An operator A on a separable Hilbert space 3C is a commutator if and only if A is not of the form $\lambda I + C$ where $\lambda \neq 0$ and C is a compact operator.

This theorem furnishes the solution to several problems concerning commutators posed by Halmos in [4] and [5]. In particular it is interesting to note that the identity operator is the limit in the norm of commutators and that there exists a commutator whose spectrum consists of the number 1 alone.

Indication of the Proof. We must show that every operator that is not of the form $\lambda I + C$, with $\lambda \neq 0$ and C compact, is a commutator. These operators fall naturally into two classes; viz., the class of compact operators, which was shown to consist entirely of commutators in [1], and the class consisting of all operators that cannot be written in the form $\lambda I + C$ for any scalar λ (0 or not) and compact C. We denote this latter class by (F), and the first problem is to obtain a more usable characterization of the operators of this class. To this end we define for an arbitrary operator T on \Re the function

$$\eta_T(x) = ||Tx - (Tx, x)x||, \quad x \in \mathfrak{F}, ||x|| = 1,$$

and denote by $\eta_T(\mathfrak{M})$ the supremum over the subspace $\mathfrak{M} \subset \mathfrak{K}$ of $\eta_T(x)$.

PROPOSITION 1. An operator T is of type (F) if and only if $\inf \eta_T(\mathfrak{M}) > 0$ where the infimum is taken over all cofinite-dimensional subspaces \mathfrak{M} of \mathfrak{R} .

This proposition may then be employed to yield a "standard form" for operators of type (F).

PROPOSITION 2. Every operator of type (F) is similar to an operator of the form

$$\begin{pmatrix}
A_{11} & A_{12} & 0 \\
A_{21} & A_{22} & I \\
A_{31} & A_{32} & 0
\end{pmatrix}$$

acting in the usual fashion on a Hilbert space $\mathfrak{K} \oplus \mathfrak{K} \oplus \mathfrak{K}$. (The A_{ij} are, of course, operators on \mathfrak{K} .)

It is easily seen from this that to complete the proof it suffices to show that every 2×2 operator matrix of the form

$$\begin{pmatrix} A & U \\ B & 0 \end{pmatrix}$$
,

where U is an isometry with infinite deficiency, is a commutator. This is accomplished by making a fairly intricate sequence of computations involving 2×2 matrices with operator entries. A central tool used in this argument is the result [6] that every operator with an infinite-dimensional null space is a commutator.

We note in conclusion that the restriction to separable spaces in the statement of the above theorem is for the sake of simplicity only; analogous results hold for an arbitrary infinite-dimensional Hilbert space.

BIBLIOGRAPHY

- 1. Arlen Brown, P. R. Halmos and Carl Pearcy, Commutators of operators on Hilbert space, Canad. J. Math. (to appear).
- 2. Arlen Brown and Carl Pearcy, Structure of commutators of operators (to appear).
 - 3. P. R. Halmos, Commutators of operators, Amer. J. Math. 74 (1952), 237-240.
 - 4. ——, Commutators of operators. II, Amer. J. Math. 76 (1954), 191-198.
- 5. —, A glimpse into Hilbert space, Lectures in Mathematics, Wiley, New York, 1963.
- 6. Carl Pearcy, On commutators of operators on Hilbert space, Proc. Amer. Math. Soc. (to appear).
- 7. H. Wielandt, Über die Unbeschränktheit der Operatoren der Quantenmechanik, Math. Ann. 121 (1949), 21.
- 8. A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738-739.

University of Michigan