APPROXIMATION THEOREMS FOR SEMI-GROUP OPERATORS IN INTERMEDIATE SPACES

BY HUBERT BERENS AND P. L. BUTZER Communicated by E. E. Hewitt, April 8, 1964

Let X be a real or complex Banach-space; if $f \in X$, ||f|| denotes the norm of f. If E(X) denotes the Banach-algebra of endomorphisms of X, $\{T(t)\}$ is called a one-parameter semi-group in E(X) of class (C_0) , if (i) $T(t) \in E(X)$ for $t \in [0, \infty)$, T(0) = I (identity); (ii) T(t+u) = T(t)T(u) for $t, u \in [0, \infty)$; (iii) $\lim_{t \downarrow 0} ||T(t)f - f|| = 0$ for all $f \in X$.

Under these hypotheses the infinitesimal operator of $\{T(t)\}$ is a closed linear operator A defined by

$$\lim_{t \to 0} ||t^{-1}[T(t)f - f] - Af|| = 0$$

with domain of definition D(A) dense in X. D(A) becomes a Banach-space, if the norm is defined by ||f|| + ||Af|| (see E. Hille and R. S. Phillips [3, Chapter X]).

One of the authors [1] has studied the problems of best approximation in semi-group theory. Thus:

Let $\{T(t)\}\$ be a semi-group of class (C_0) defined on X.

- (i) If ||T(t)f-f|| = o(t) $(t \downarrow 0)$, then $Af = \Theta$ and $T(t)f \equiv f$.
- (ii) For each $f \in D(A)$ we have ||T(t)f f|| = O(t) $(t \downarrow 0)$.
- (iii) If X is reflexive and ||T(t)f-f|| = O(t) $(t \downarrow 0)$, then $f \in D(A)$.

The statements (i) and (ii) go back to E. Hille [3, Chapter X]. For a generalization of this theorem see the cited paper as well as K. de Leeuw [4] and P. L. Butzer and H. G. Tillmann [2].

It is the object of this note to characterize the set of elements f, for which the order of approximation of f by T(t)f is not the best possible, i.e., we will not treat saturation problems. In this case, the following general theorem holds.

THEOREM 1. Let $\{T(t)\}$ be a semi-group of class (C_0) , let $T(t)[X] \subset D(A)$ for each t>0 and $||AT(t)|| \leq M_0 t^{-1}$, then

$$||T(t)f - f|| = O[\phi(1/t)] \qquad (t \downarrow 0)$$

implies

$$||AT(t)f|| \le M_1 + M_2 t^{-1} \phi(1/t) + M_3 \int_1^{1/t} \phi(u) du \qquad (0 < t \le 1),$$

where $\phi(u)$ is a positive nonincreasing function in $[1, \infty)$ and M_i (i=0, 1, 2, 3) are constants.

We may remark that M. Zamansky [7] has established a theorem of this type for trigonometric polynomials.

COROLLARY. Under the conditions of Theorem 1 we have

- (i) $||T(t)f-f|| = O(t^{\alpha})$ $(0 < \alpha < 1; t \downarrow 0)$ if and only if $||AT(t)f|| = O(t^{\alpha-1})$ $(t \downarrow 0);$
 - (ii) if ||T(t)f f|| = O(t) $(t \downarrow 0)$, then $||AT(t)f|| = O(\log 1/t)$ $(t \downarrow 0)$.

The corollary is an immediate consequence of the theorem.

Sketch of proof of Theorem 1. Setting $t_k = 1/2^k$ $(k = 0, 1, 2, \cdots)$, we denote by U_k the operator $T(t_k) - T(t_{k-1})$. Then by the semi-group property $AU_k f = AT(t_k) [f - T(t_{k-1})f] - AT(t_{k-1}) [f - T(t_k)f]$, and making use of the assumptions one has

$$||A U_k f|| \le ||A T(t_k)|| ||f - T(t_{k-1})f|| + ||A T(t_{k-1})|| ||f - T(t_k)f||$$

$$\le M 2^{k-1} \phi(2^{k-1}) \qquad (k = 1, 2, \cdots).$$

Now, let t be given in (0, 1], we choose an integer n such that $t_n < t \le t_{n-1}$. Then

$$||AT(t_n)f - AT(t_{n_0})f|| \le \sum_{k=n_0+1}^n ||AU_kf|| \le 2M \int_{2n_0-1}^{1/t} \phi(u)du.$$

Similarly, we get

$$||AT(t)f - AT(t_n)f|| \le Mt^{-1}\phi(1/t),$$

and, furthermore,

$$||AT(t)f|| \le ||AT(t_{n_0})f|| + ||AT(t_n)f - AT(t_{n_0})f|| + ||AT(t)f - AT(t_n)f||,$$

which proves the theorem for $n_0 = 1$.

As an application we will discuss the singular integral of Abel-Poisson. Let f be a continuous, 2π -periodic function $(f \in C_{2\pi})$, with $||f|| = \max_x |f(x)|$. Abel's method of summation of the Fourier series of f defines the singular integral

$$[V(t)f](x) = V(f; e^{-t}; x) = a_0/2 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)e^{-kt}$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(u)P(e^{-t}; x - u)du \qquad (0 < t < \infty),$$

¹ If $T(t)[X] \subset D(A)$ for each t>0, then AT(t) exists as a bounded linear operator on X for t>0; ||AT(t)|| denotes the operator norm.

with

$$P(r; u) = \frac{1}{2} \frac{1 - r^2}{1 - 2r \cos u + r^2} \qquad (r = e^{-t}; 0 \le r < 1).$$

V(t) is a semi-group of class (C_0) with ||V(t)|| = 1. D(A) is the set of functions f, for which the derivative of the conjugate function, thus $f' \sim \sum_{k=1}^{\infty} k(a_k \cos kx + b_k \sin kx)$ is an element of $C_{2\pi}$. Furthermore, $V(t) \lceil C_{2\pi} \rceil \subset D(A)$ for all t > 0 and

$$||AV(t)|| = \frac{1}{\pi} \int_{-\pi}^{\pi} |Q'(e^{-t}; u)| du \le 4t^{-1} \quad (0 < t < \infty),$$

whereby

$$Q(r; u) = \frac{r \sin u}{1 - 2r \cos u + r^2}.$$

Now, with the aid of the corollary we have

THEOREM 2. Let $f \in C_{2\pi}$, and let V(f; r; x) be the Abel-Poisson integral. The following statements are equivalent if $0 < \alpha < 1$:

- (i) $||f(x+h)-f(x)|| = O(|h|^{\alpha}) (h \to 0);$
- (ii) $||f(x+h)-2f(x)+f(x-h)|| = O(|h|^{\alpha}) (h \to 0);$
- (iii) $\|\tilde{V}'(f; r; x)\| = O(1-r)^{\alpha-1} (r \uparrow 1);$
- (iv) $||V''(f; r; x)|| = O(1-r)^{\alpha-2} (r \uparrow 1);$
- (v) $||V(f; r; x) f(x)|| = O(1-r)^{\alpha} (r \uparrow 1).$

The equivalence of the statements (i)-(iv) above is known, the results being mainly due to G. H. Hardy and J. E. Littlewood (see A. Zygmund [8, Chapter VII]). These proofs, in contrast to ours, used complex methods. The fact that (v) is equivalent to (i) is a new contribution.

In some of his papers, J. L. Lions [5] has studied trace theorems and theorems of interpolation in semi-group theory. He introduced the so-called intermediate spaces $X[p, \alpha, A]$: Let $\{T(t)\}$ be a semi-group of class (C_0) with $||T(t)|| \leq M_0$ for all $t \geq 0$. We denote by $X[p, \alpha, A]$ the set of elements $f \in X$ for which the integral

$$\int_0^\infty t^{(\alpha-1)p} ||T(t)f - f||^p dt$$

exists, where $-1/p < \alpha < 1-1/p$, $1 \le p \le \infty$. $X[p, \alpha, A]$ becomes a Banach-space under the norm

$$||f|| + \left\{ \int_0^\infty t^{(\alpha-1)p} ||T(t)f - f||^p dt \right\}^{1/p}.$$

(If $p = \infty$, the modification is evident.) It is easy to see that

$$D(A) \subset X[p, \alpha, A] \subset X.$$

With methods stated above we can prove the following theorem concerning $X[p, \alpha, A]$.

THEOREM 3. Let $\{T(t)\}$ be a semi-group of class (C_0) , let $||T(t)|| \le M_0$, $T(t)[X] \subset D(A)$ for each t > 0 and $||AT(t)|| \le M_1 t^{-1}$, then $f \in X[p, \alpha, A]$ if and only if the integral

$$\left\{\int_{0}^{\infty}t^{\alpha p}||AT(t)f||^{p}dt\right\}^{1/p}$$

is finite.

By use of this theorem one may infer some of the results due to M. H. Taibleson [6] for the singular integral of Poisson-Cauchy in *n*-dimensional Euclidean space, since this integral is a semi-group operator satisfying the conditions of Theorem 3.

The proofs of these and further results will appear elsewhere.

REFERENCES

- 1. P. L. Butzer, Über den Grad der Approximation des Identitätsoperators durch Halbgruppen von linearen Operatoren und Anwendungen auf die Theorie der singulären Integrale, Math. Ann. 133 (1957), 410-425.
- 2. P. L. Butzer and H. G. Tillmann, An approximation theorem for semi-groups of operators, Bull. Amer. Math. Soc. 66 (1960), 191-193.
- 3. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957.
- 4. K. de Leeuw, On the adjoint semi-group and some problems in the theory of approximation, Math. Z. 73 (1960), 219-234.
- 5. J. L. Lions, Théorèmes de trace et d'interpolation. I, Ann. Scuola Norm. Sup. Pisa 13 (1959), 389-403.
- 6. M. H. Taibleson, Lipschitz classes of functions and distributions in E_n, Bull. Amer. Math. Soc. 69 (1963), 487-493.
- 7. M. Zamansky, Classes de saturation de certains procédés d'approximation des séries de Fourier des fonctions continues et applications à quelques problèmes d'approximation, Ann. Sci. École Norm. Sup. (3) 66 (1949), 19-93.
- 8. A. Zygmund, Trigonometrical series, Vols. I, II, rev. ed., Cambridge Univ. Press, Cambridge, 1959.

THE TECHNICAL UNIVERSITY OF AACHEN, AACHEN, GERMANY