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Consider a system of algebraic differential equations 

P(yu • • •,yn) = o ( P e s ) 
with coefficients in a differential field ^ (ordinary or partial) ; here 2 
is any subset of the differential polynomial algebra & = ${yi, • • • , yn} 
over 5\ Denote the set of all solutions of this system by 3 (2 ) . We 
seek a measure of the size of 3 (2 ) . The analogous question for sys­
tems of algebraic equations (i.e. for affine algebraic geometry) has a 
satisfactory answer in the notion of dimension. 

In the classical literature, where ^ consists of meromorphic func­
tions on some region of complex w-space, the solution is said to de­
pend on a certain number d of arbitrary functions of m variables; if 
d = 0 then the solution is said to depend on a certain number of arbi­
trary functions of w - 1 variables; and so on. Of course, except in 
certain special cases, what this means (how these numbers are de­
fined) is not made precise, and general results are therefore wanting. 

The Ritt theory (see [l]) contains the beginning of a general 
answer to the question (when SF is of characteristic 0). First 2 is 
replaced by the perfect differential ideal a generated by 23; this is 
harmless since 3 (2 ) =30*). Then a is expressed as the intersection of 
its components, a = piH • • • Hp r ; since 30*)=3( l> i )^ * ' * ^S($r), 
the question is reduced to the case in which S is a prime differential 
ideal p of Ö-. Finally, one takes a generic zero rj = (rji, • • • , rjn) of p, 
and computes the differential transcendence degree d(p) of the differ­
ential field extension (̂77) of SF; d(fi) is called the differential dimension 
of p, or of 3(p)> a n d is the "correct" definition for what is classically 
called the number of arbitrary functions of m variables in the solu­
tion of the system P = 0 ( P £ p ) . Moreover, if p' is another prime 
differential ideal of d subject to the inclusion pCp ' (or, equivalently, 
to the inclusion 3(p) D3(p ' ) ) then d(p) È^d(p') ; however, when the in­
clusions are strict the inequality need not be so. This shows that 
d(p) is not a sufficiently fine measure of the size of 3(t0-

In what follows we present another measure, which is sufficiently 
fine, and describe its relation to d(fi) and some of its other properties; 
it is vaguely reminiscent of Hubert 's "characteristic function" for 

1 This research was supported by the National Science Foundation. 
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homogeneous polynomial ideals.2 For the sake of simplicity we con­
tinue to suppose that the differential field ^ is of characteristic 0; 
we denote the derivation operators of SF by ôi, • • • , 5m. We omit the 
proofs. All details, as well as generalization to nonzero characteristic, 
will appear in a book now in preparation. 

We recall that a polynomial ƒ £2? [X] in one indeterminate is said 
to be numerical if j f (s)£Z for all sufficiently big s£iV. Any ƒ can be 
written in the form 

where a* G J? and 

/X+k\ 
(̂  k \ = (X + 1)(X + 2) • • • (X + k)/k\; 

ƒ is numerical if and only if akŒZ for every k.z We define ƒ S g to 
mean that f(s) Sg(s) for all sufficiently big s£iV; this totally orders 
i?[X] , and well orders the set of all numerical polynomials which are 

For any s^N there are 

/s + m\ 
n\ ) 

\ m / 

derivatives S*1 • • • S^jj with ii+ • • • +im^s and l^j^n; they 
may be regarded as indeterminates over the field $, and therefore the 
ring 

®s = 3[(ài * • • 5«r^-)f-1+...+iw>g,,i^J-]n 

is a polynomial algebra over £F in the usual sense. For any prime 
differential ideal p of ®, pP\Cts is a prime ideal of ds and hence has a 
dimension. 

THEOREM 1. Let p be a prime differential ideal of d. There exists a 
unique numerical polynomial o)$ such that dim(pP\Cts) =cop(s) for all 
sufficiently big s (EN. 

2 For a general discussion of the characteristic function see e.g., [2, pp. 230-237]. 
By using a filtration instead of a grading one can equally well introduce the charac­
teristic function in the nonhomogeneous theory. 

3 See e.g., [2, p. 233]. 
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We call cup the differential dimension polynomial of p. Some of its 
properties are given by the following result. 

THEOREM 2. Let p be a prime differential ideal of Cfc. 

(a) 0£<*»£n( ) , 
\ m / 

so that deg o ^ r a . 

(b) cop = 0 if and only if Z(p) is a finite set. 

/X+m\ 
(c) cop^wf ) if and only ifp=(0). 

\ m / 
— /X+m\ 

(d) If we write cop= 2-* a*ftO ( ) ^ e ^ #m(p) = ^(p). 

Thus, o?p contains at least as much information about p as d(p) does. 
The following observation shows that cop gives an adequate measure of 
the size of Z(p). 

THEOREM 3. Le£ p, p' &£ prime differential ideals of d with pCp ' , 
pT^p'. Then a>p>cop/. 

We recall (see [l, pp. 30-31 and 166-167]) that for an irreducible 
differential polynomial P(Ei®> Ritt defined the notions of general 
component and singular component of P; precisely one of the com­
ponents of P is general, the rest all are singular. 

THEOREM 4. Let $be a prime differential ideal of a. A necessary and 
sufficient condition that p be the general component of an irreducible 
differential polynomial in & of order e is that 

/X + m\ /X + m-e\ 

\ m ) \ m ) 
COp 

It follows that when this is the case then 

/X + m\ (X + m - 1\ 

\ m / \ m — 1 / 

that is, aw(p) =w—1 and am_i(p) —e. 
We remark that o>p is a birational invariant but not a differential 

birational invariant. By this we mean that if p, q are prime differen­
tial ideals of Q, with respective generic zeros 77, f then the condition 
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$(?l)=:&($) implies that cop = a>q but the weaker condition 3:(^) = 3r(f) 
does not. Nevertheless, cop carries with it certain differential birational 
invariants. One example is am(p). The following result provides others. 

THEOREM 5. For each prime differential ideal $ of a with o^^O set 
w'(p) = deg oip and d'(p) =am'<$)($)• Then m'(p) and d'(p) are differential 
birational invariants. 

We call m'(p) the differential type of p and call d'(p) the typical 
differential dimension of p. The following result interprets these in­
variants and justifies the terminology somewhat. 

THEOREM 6. Let ^bea prime differential ideal of & having differential 
type m' and typical differential dimension d' ; let rj be a generic zero of p 
and set 8 = ^(77). Then there exists an m'Xm matrix (c»/») over the field 
of constants Q of $ of rank m' such that if we set h'v = ] C i ^ m C*'A 
(1 Si' S m') and regard $ and g as differential fields with the m' deriva­
tion operators h{, • • • , b'm> then g is a finitely generated differential field 
extension of $ of differential transcendence degree df. The matrices (c^i) 
having this property form an open subset of ew 'w in the Zariski 6-
topology. 

In the classical terminology we could say that the solution of the 
system P = 0 ( P £ p ) depends on d' arbitrary functions of m' variables 
(but not on any arbitrary functions of more than m' variables). 

I t would be interesting to find other differential birational invari­
ants. 
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