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Consider a system of algebraic differential equations

Py, - -,9) =0 (PE2)
with coefficients in a differential field § (ordinary or partial); here =
is any subset of the differential polynomial algebra @ =5 {yi, + - -, ¥, }

over ¥. Denote the set of all solutions of this system by 3(Z). We
seek a measure of the size of 8(2). The analogous question for sys-
tems of algebraic equations (i.e. for affine algebraic geometry) has a
satisfactory answer in the notion of dimension.

In the classical literature, where & consists of meromorphic func-
tions on some region of complex m-space, the solution is said to de-
pend on a certain number d of arbitrary functions of m variables; if
d=0 then the solution is said to depend on a certain number of arbi-
trary functions of m —1 variables; and so on. Of course, except in
certain special cases, what this means (how these numbers are de-
fined) is not made precise, and general results are therefore wanting.

The Ritt theory (see [1]) contains the beginning of a general
answer to the question (when & is of characteristic 0). First 2 is
replaced by the perfect differential ideal a generated by Z; this is
harmless since () =3(a). Then a is expressed as the intersection of
its components, a=p/MN + - - Mp,; since B(a)=3Gp)Y - - - UB3(p,),
the question is reduced to the case in which 2 is a prime differential
ideal p of @. Finally, one takes a generic zero n=(n1, + * *, 7,) of p,
and computes the differential transcendence degree d(p) of the differ-
ential field extension F(n) of F; d(p) is called the differential dimension
of p, or of 3(p), and is the “correct” definition for what is classically
called the number of arbitrary functions of m variables in the solu-
tion of the system P=0 (P&p). Moreover, if p’ is another prime
differential ideal of @ subject to the inclusion p Cp’ (or, equivalently,
to the inclusion 8(p) DB(p’)) then d(p) =d(p’); however, when the in-
clusions are strict the inequality need not be so. This shows that
d(p) is not a sufficiently fine measure of the size of 3(p).

In what follows we present another measure, which is sufficiently
fine, and describe its relation to d(p) and some of its other properties;
it is vaguely reminiscent of Hilbert’s “characteristic function” for

1 This research was supported by the National Science Foundation.
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homogeneous polynomial ideals.? For the sake of simplicity we con-
tinue to suppose that the differential field & is of characteristic 0;
we denote the derivation operators of & by 61, * * +, 6. We omit the
proofs. All details, as well as generalization to nonzero characteristic,
will appear in a book now in preparation.

We recall that a polynomial fER[X] in one indeterminate is said
to be numerical if f(s)EZ for all sufficiently big s&N. Any f can be
written in the form

f=zdk<

k

X+k)
k b

where a;ER and

(X+k

! )=<X+1><X+z>---<x+k>/k1;

f is numerical if and only if ax&Z for every k.2 We define f<g to
mean that f(s) £g(s) for all sufficiently big s&N; this totally orders
R[X], and well orders the set of all numerical polynomials which are

=0.
For any s& N there are
(%)
n
m
derivatives 6% - - - &§imy; with 41+ - - - +i,<s and 1=5j<#n; they
may be regarded as indeterminates over the field &, and therefore the
ring

: in
Go = F[(31 * * * O V) irk- - timse1Siln

is a polynomial algebra over ¥ in the usual sense. For any prime
differential ideal p of @, P\ @, is a prime ideal of @, and hence has a
dimension.

THEOREM 1. Let p be a prime differential ideal of Q. There exists a
unique numerical polynomial wy, such that dim(pN\Q,) =wy(s) for all
suffictently big s&N.

2 For a general discussion of the characteristic function see e.g., [2, pp. 230-237].
By using a filtration instead of a grading one can equally well introduce the charac-
teristic function in the nonhomogeneous theory.

3 See e.g., [2, p. 233].
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We call wy the differential dimension polynomial of p. Some of its
properties are given by the following result.
THEOREM 2. Let p be a prime differential ideal of Q.
X+ m
(a) 0=w= ”( )7
m

so that deg wy < m.

(b) wp=0 if and only if Z(p) is a finite set.

(c) wy=mn (X;l};m) if and only if p=(0).

(d) If we write wy= »_, a(p) <X:;m> then an(p)=d(p).

Osksn

Thus, wp contains at least as much information about p as d(p) does.
The following observation shows that w, gives an adequate measure of
the size of Z(p).

THEOREM 3. Let p, v’ be prime differential ideals of @ with pCy’,
=Y. Then wy>wy.

We recall (see [1, pp. 3031 and 166-167]) that for an irreducible
differential polynomial P& @ Ritt defined the notions of general
component and singular component of P; precisely one of the com-
ponents of P is general, the rest all are singular.

THEOREM 4. Let p be a prime differential ideal of Q. A necessary and
sufficient condition that p be the gemeral component of an irreducible
differential polynomial in Q of order e is that

<X+m> (X+m—e>
wp = N bt .
m m

It follows that when this is the case then

wp=(n_1)<X+m>+e<X+m—1)+.”,

m m— 1

that is, an(p) =#—1 and an_i(p) =e.

We remark that wy is a birational invariant but not a differential
birational invariant. By this we mean that if p, q are prime differen-
tial ideals of @ with respective generic zeros 7, { then the condition
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F(n) =F(¢) implies that wp=w, but the weaker condition F{y)=F({)
does not. Nevertheless, wy carries with it certain differential birational
invariants. One example is a,(p). The following result provides others.

THEOREM 5. For each prime differential ideal b of @ with wy#0 set
m’(p) =deg wy and d' () =am qy(p). Then m'(p) and d'(v) are differential
birational invariants.

We call mw/(p) the differential type of p and call d'(p) the typical
differential dimension of p. The following result interprets these in-
variants and justifies the terminology somewhat.

THEOREM 6. Let p be a prime differential ideal of @ having differential
type m' and typical differential dimension d’;let m be a generic zero of p
and set G=5(n). Then there exists an m' Xm matrix (c;;) over the field
of constants C of § of rank m' such that if we set 8}, = D 1zizm Cirid;
(1=7 =m’) and regard § and G as differential fields with the m’ deriva-
tion operators 8{ , - - -, O, then G is a finitely generated differential field
extension of § of differential transcendence degree d'. The matrices (cys)
having this property form an open subset of C™™ in the Zariski C-

topology.

In the classical terminology we could say that the solution of the
system P =0 (PE&p) depends on d’ arbitrary functions of m’ variables
(but not on any arbitrary functions of more than m' variables).

It would be interesting to find other differential birational invari-
ants.
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