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Let K be a field of characteristic p^o and Der K denote the set of 
all derivations of K into itself, i.e., of additive maps <£ of K into itself 
such that c/)(xy) =<t>(x)y+x<l>(y) for all x and y in K. Then Der K is 
(1) a vector space over K> (2) closed under the formation of pth 
powers, i.e., <fi in Der K implies 4>p is in Der K, and (3) a Lie subring 
of the ring of additive endomorphisms of K, i.e., <f>, x// in Der K imply 
<f>\p—\p<i> is in Der K. A theorem of Jacobson [ó] gives a relationship 
between the subfields k of K with Kpdk and [i£:&] < oo, and "re­
stricted" Lie subrings of Der K, which are finite-dimensional vector 
spaces over K, i.e., the subsets D satisfying (1), (2), and (3) with 
dimKD< oo. Indeed, given such a k, then the set Derk K of those 
derivations of K into itself which vanish on k is clearly a restricted 
Lie subring of finite dimension over K, and if [K:k]=pm, then one 
has dimx(Derfc K) =rn. Conversely, Jacobson demonstrated that 
given a restricted subring D of Der K which is a finite-dimensional 
vector space over K, and denoting by k the constant field of D, i.e., 
the set of all x in K such that <j>(x) = 0 for all <j> in D, then in fact 
D = Derk K, whence if dim^ D = m, then [K:k]=pm. If </> is in Der^ X 
then we say that 0 is a derivation "over k." 

It is remarkable that from the hypotheses of Jacobson's theorem 
one may delete the assumption that D be a Lie subring of Der K. In 
fact, if we define a restricted subspace of Der K to be a subset which 
is a vector space over K and which is closed under the formation of 
£th powers, then one may assert: If D is a finite-dimensional restricted 
subspace of Der K, and if k is the field consisting of all x in K such that 
cj>(x) = 0 for all 4> in D, then D = Der/t K. It follows a posteriori that D 
must be a Lie subring of Der K. The purpose of the present note is 
to give a simple proof of this strengthened result. For connections 
with other work, see the "concluding remarks." 

1. Derivations of a field. Let K be a field of characteristic p^Q and 
Der K denote the set of derivations of K into itself. Given <j> in 
Der K, the set of x in K such that <f>{x) = 0 forms a subfield K^ of K 
called the constant field of <fr; if x is in K^ then <f>(xy) =X(p(y) for all y 
in K, and conversely. We note that since <fi(xp) =0 for all x in K, we 
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have KpC.K<t> for every 0 in Der K. Therefore, if a is in K but not in 
Kt, then [K^{a)\ K^p. 

Suppose given 0 in Der K and a in K such that 0(a) 5^0. Then 
setting ^ = a0(a)~10, we have \p(a)=a. Therefore, 0(a) ^ 0 implies 
that there is a multiple \p of 0 having a as a proper vector with proper 
value unity. Note that K<t, = Kxj/. Suppose now that for some 0 in 
Der K and a, b in X, we have 0(a) = Xa, 0(&) =JU& with X, M in X'o. 
Then 0(a_ 1) = —Xa and <fr(ab) = (X+/z)a&. It follows that if 0(a') = Xa' 
and also 0(a") =\a", X in K^, then <j){a' /a") = 0, i.e., a'/a77 lies in i£0 . 
Therefore, if X is in K^, then the set of those a in K such that 0(a) =\a 
is either reduced to the zero element or is a one-dimensional vector 
space over K^. 

LEMMA 1. Suppose given 0 in Der K and a^Qin K such that 0(a) = a. 
Set\p = <t>*-(l>. ThenKxp = K(j)(a). 

PROOF. Since 0(a) = a implies <j)p(a)=a, it follows that \f/(a)=0, 
whence K^K^a). It remains to prove the reverse inclusion. 

Note first that since the characteristic is p, we have 0p—0 
= 0 ( 0 - 1 ) ( 0 - 2 ) • • • ( 0 - ^ + 1). Set now f(t)=tp-t = t(t-l) • • • 
(t — p + 1), and define polynomials fi(t), i = 0, 1, • • • , p — \ of degree 
p-1 in t by fi(t)= f(t)-(t~i)-\ We have then /*( j )=0 if i^j, but 
/ { ( ^ O . Therefore, the polynomials fi(t), which have coefficients in 
the Galois field Fp of p elements, are linearly independent over that 
field, since indeed, if ] C T * / * ( 0

 ==0, Y* in FP, then substituting j for t> 
one finds Yy^O- It follows that every polynomial g{t) of degree p — 1 
or less, with coefficients in F p , is a linear combination over Fp of the 
polynomials ƒ«•(/). In particular, we have X / ^ / K O ^ l for suitable 
integers a* (mod £). 

Now suppose that b is in K^, i.e., that (0P—0)(6) =0(0—1) • • • 
( 0 - £ + l)(Z?)=O. It follows that (0-;)/;(0)(6)==O, or setting ƒ,(0)(&) 
= 6t-, we have (0-i)(&*) = 0 , i = 0, 1, • • • , £ - 1 . But (0- i ) (a*)=O, 
whence &;/a* is in X 0 , and therefore bi is in K^{a) for i = 0, 1, • • • , 
/> — 1. However, X/*iA(0) = 1, whence J^ajbi = b, and & being thus 
a linear combination with integer coefficients of elements of K^a), we 
have shown that & lies in the same field. Therefore indeed K$ (ZK(j)(a)1 

ending the proof. 
We recall that if K is an inseparable extension of a field k, then a 

finite set %u • * • , xn of elements of K is said to be p-independent 
over k if the pn monomials x^x^ • • • x|", 0^iq<p are linearly inde­
pendent over kKp. An infinite set is independent if every finite subset 
is, and a maximal ^-independent set is a p-basis of K over £. If 
[K:kKp]=pm and is finite, then the dimension (i.e., cardinality) of a 
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£-basis of K over k is m, and conversely, and a necessary and suffi­
cient condition that X\, • • • , xm be a £-basis over k is that there exist 
i>u ' ' ' 9<t>m in Der/b i£ such that denoting by S# the Kronecker delta 
(St-,- = 0 if ij*j, 8«=1) , one has <£4(xy) = ô;y. These <f>i then constitute 
a basis over K for Der& K. A detailed discussion of ^-bases can be 
found in Zariski-Samuel, Vol. I [8, p. 129], or Jacobson [7, p. 180], 

Given <j> in Der K, let D^ denote the smallest restricted subspace 
of Der K containing (p. Since for any \p in Der K and a in K, (a\p)p 

can easily be shown to be of the form b\j/p+c\(/ for certain b and c in 
K, D<i> is just the set of all derivations of the form a o 0+#i0 2 , + • • • 
+am<t>vm

1 ai in K, m = 0, 1, • • •. We shall not, however, need this 
remark. 

LEMMA 2. If <j> is in Der K and x\, * * * , X"fli are p-independent over 
K<f>, then there exist <£i, • • • , <j>n in D<t> such that <j>i(Xj) = ôij. (These <j>i 
are then, in particular, linearly independent over K.) 

PROOF. It is clearly sufficient to show that there exists a \p in D^ 
such that \f/(xi) ^ 0 but \p(x2) = • • • =\p(xn) = 0. Since <j>(x2) 5^0, there 
exists a multiple acj>, a in K, such that a<j>(x2) = #2. Setting </>' = (a<j>)p 

— (acjy), we have <j>' in D^, and by Lemma 1, K^—K^x^). Since the 
latter field does not contain x5, we have 0 '(x s)^O, and proceeding as 
before, can construct <f>" in D^ with K^'—K^ixz) =K(f>(x2, x3). Con­
tinuing, we obtain an element \p in Z^ with Krp = K(f)(x2, • • • , xn). 
Since Xi is not in the latter field, we have ^ ( x i ) ^ 0 but ^(x2) = • • • 
=^(ff») = 0 , as required. This ends the proof. 

The foregoing has the following 

COROLLARY. [KIK^] is finite if and only if dim^ D^ is finite, and 
in that case D^ is the set of all derivations of K vanishing on K^. In 
particular, D^ is then a Lie subring of Der K. 

PROOF. Since KPC.K^, if [K:K<t>] is infinite, then the dimension of 
a ^-basis of K over K<f> is infinite, and there exist, by the lemma, for 
every positive n, at least n elements of D^ which are linearly inde­
pendent over K. Therefore dim^ D^ in this case is infinite. On the 
other hand, if [K:K4)]=pn and is finite, and if •A / J , , «A/J2, J-O a £-basis 
of K over K^, then the <£i, • • • , <j>n of the lemma are a basis over K 
for the Lie ring of derivations of K over K<t>. Since D^ is contained 
in the latter ring and also contains a basis over K for it, it coincides 
with it. This ends the proof. 

Finally, one may remark that if k is a subfield of K such that 
KpQk, then there is a <j> in Derfc K such that K<f) = k. Indeed, if (#») 
is a ^-basis for K over k, then a derivation <j> of K over k is completely 
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determined by its values at the #»-. Choosing 4>(xi) = X»#i, X* in k, we 
have for any monomial M of the form x|j • • • ocjfc, 0^jq<p, <f>(M) 
= (Xiji+ • • • +Xnjn)Mt and it is sufficient to choose the X; in such 
a way that no expression of the form \iji + • • * +X /Jn vanishes ex­
cept if all the j q are zero, i.e., such that the X; are linearly independent 
over the prime field. To this end it is sufficient to take Xi=(xt-)p, 
for the Xi being linearly independent over k, it follows that the Xt 

are linearly independent over kp, hence a fortiori over the prime field. 

2. The main theorem. Given <£ and yp in Der K, we shall denote by 
D^d the smallest restricted subspace of Der K containing both <j> 
and \p. 

LEMMA 3. Given <j>, \p in Der K, let be elements of K which 
are p-independent over K^, and y be an element of K^ with rp(y)9£0. 
Then there exists an element 6 in D^^ such that Xi, • • • , xm, y are p-
independent over Ke. Further, \K\ K^r\K^] is finite if and only if 
dimK D^^ is finite, and in the latter case there exists a 6 in D^j such 
that Ke = K(}>r^Krp and De^D^. 

PROOF. By Lemma 2, there exist cf>ly • • • , </>n in D^ such that 
<t>i(Xj) = dij. Since y is in K^, we have further that <l>i(y) = 0. It follows 
that subtracting from \p a suitable linear combination over K of the 
<j>i, and multiplying the result by a suitable element of K, we can 
obtain a \p' in D^^ with yp'(x3) = 0, j= 1, • • • , n, and yf/'(y) = 1. Now 
set x\ = Xt-, ;yp = /x> a n d set d= X)^*x»0*+M3^/« Then, as in the final 
remark of the preceding section, 6 can not vanish on any monomial M 
in the Xi and y with non-negative exponents less than p except M = 1. 
The Xi and y are therefore ^-independent, as asserted, over Ke. 

As for the rest (observe that if at least one is infinite), and as both 
[K: Ke] ^ [K: K^K^] and dim* DeS dim* B^ for all such 0, it fol­
lows that both dim^ D^^ and [K: K^K^] are infinite. In the con­
trary case, there exists a 0 in D^^ for which dim# De is finite and max­
imal. Then for this 0 we must have Ke = K^r\K,p, for were this not the 
case then there would exist a y in Ke which was not in K^K^ 
whence either <fi(y) 9^0 or \[/(y) ^ 0 . Assuming, without loss of general­
ity, the latter, and letting xi, • * * , xn be the ^-basis of K over Ke, the 
first part of the lemma would construct a new 0 with [K: Ke] even 
larger, a contradiction. Therefore indeed Ke^K^K^, whence by 
Lemma 2 we have also De = D(f)^. This ends the proof. 

The foregoing has the following immediate 

COROLLARY. Let D be a finite-dimensional restricted subspace of 
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Der K, and k be its constant field. Then there exists a d in D such that 
Kd = k, whence De = DerA K. 

This in turn immediately implies the final result. 

THEOREM:. Let K be a field of characteristic p^Q, D be a restricted 
subspace of Der K, and k be the constant field of D. Then [K:k] is 
finite if and only if dim^ D is finite, and in the latter case D = Der& K. 
Moreover, D is then a Lie sub ring of Der K, there is an element 6 in D 
such that k — K$, and f or any such 6 we have D = De. 

3. Concluding remarks. The analogy between Jacobson's theorem 
and the fundamental theorem of the Galois theory has led to highly 
successful attempts, mainly by Hochschild [2], and more recently 
by Hoechsmann [3], to use restricted Lie algebras in the study of 
simple algebras with purely inseparable splitting fields. Many basic 
ideas are traceable to Jacobson [4], [5]. The central role of Jacobson's 
theorem is evident in [2], where another proof is given. The useful­
ness of having a restricted space of derivations generated by a single 
element can be seen in [3]. 

A weaker form of the present main theorem has been obtained 
independently by Jacobson, who proved that if D is a restricted sub-
space of Der K with constant field k, and if [i£:&] is known a priori 
to be finite, then D = Der& K. The proposition is given as Exercise 4, 
p. 190 of [7], in which it is required to show that D is closed under 
commutation, Jacobson's original theorem then being applicable. 

The starting point of the present investigation, and one of the 
intimations that the hypothesis of Lie closure was inessential, came 
from the deformation theory for rings and algebras initiated by the 
author [ l ] . The present note is, in fact, a fragment split from a paper 
in preparation in which the concepts of separability and degree of 
inseparability are defined for arbitrary algebras, and a form of Galois 
theory given in which the notion of deformation is central. The 
reason for publishing this fragment separately is that while assuming 
very little and using only elementary techniques, it rapidly both 
proves and strengthens a fundamental theorem. 
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Introduction. For a given sequence {X&} of complex numbers, the 
problem of determining those intervals I on which the exponentials 
jgix&zj a r e complete in various function spaces has been extensively 
studied [3]. Since the problem is invariant under a translation of 7, 
only the lengths of I are involved, and attention has focused on the 
relation between these lengths and the density of the sequence {X&}. 
With the function space taken to be LP(I) for 1 ^p < <*>, or C(I), the 
continuous functions on 7, the general character of the results has 
been that there exist sparse real sequences (lim r~l (the number of 
|Xjfc| < r ) = 0 , for example) for which / can be arbitrarily long [2], 
but all such sequences are nonuniformly distributed ; when a sequence 
is sufficiently regular, in the sense that X& is close enough to k, the 
length of I cannot exceed 2x [4, p. 210]. Most recently, in a complete 
solution which accounts for all these phenomena, Beurling and 
Malliavin have proved that the supremum of the lengths of I is 
proportional to an appropriately defined density of {X&} [ l ] . 

The purpose of this note is to show that the situation is quite 
different when the single interval I is replaced by a union of intervals. 
Specifically, we will construct a real symmetric (or positive) sequence 
{Xfc} arbitrarily close to the integers, for which the corresponding ex­
ponentials are complete in C(S), where 5 is any finite union of the 
intervals \x — 2nir\ <w — S, with integer n and S>0, and so has arbi­
trarily large measure. Thus, for sets 5 more general than intervals, 


