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1. Let E2 represent the plane endowed with the usual Cartesian 
coordinate system, and let R be an open set contained in E2. We say 
that X is a 1-cochain defined in R (see [7, p. 5]) if (a) X(a) is a real 
number for every 1-simplex a (i.e., oriented line segment) contained 
in R, (b) X(~- a) = ~X(a) for every 1-simplex a contained in R, 
(c) X(<r)=X(<Ti)+ • • • +X(<rn) for<r = <ri+ • • • +an with o-, ci, • • • , 
crn collinear, similarly oriented, and contained in R. X is then ex­
tended by linearity to all chains in R; so in particular if r is a 2-
simplex (i.e., oriented triangle), X(dr) is defined. 

We shall call the 1-cochain X a local L1 1-cochain in R if the follow­
ing two conditions are met: 

(1) there exist two non-negative functions gi(x) and gi(y), each 
locally in Ll on R such that 

(a) if a is a 1-simplex in R parallel to and oriented like the x-axis, 
\X(<r)\gf.gl(x)dx, 

08) if a is a 1-simplex in JR parallel to and oriented like the ^-axis, 

(2) there exists a non-negative function H(x, y) locally in L1 on R 
such that if r is a 2-simplex oriented like E2 with two edges parallel 
to the x and y-axes and r is in R, then 

| X(6V) | ^ f H(a, y)rf^y. 

Let Q be a measurable set contained in R with the property that 
IR — (Si2 = 0 (where | |y represents j-dimensional Lebesgue meas­
ure). Using the notation of [7, p. 262], we say that the 1-simplex <r 
in R is Q-good if | a—(ar\Q) 11 = 0. We say that a 2-simplex r con­
tained in i£ is Q-excellent jf e a c n 0f the 1-simplices in dr are Q-good. 

We shall call the differential form a>(#, y) =a(x, ^)Jx+^(x, y)dy a 
local L1 differential 1-form in R if the following three conditions are 
met: 

(3) a(x, y) and &(x, y) are measurable functions in R; 
(4) there exists a measurable set Q QR with | R — Q12 = 0 and two 
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non-negative functions gi(x) and g2(y) each locally in L1 on R such 
that 

(a) for (x, y) in Q, \a(x, y)\ ggi(x) and \b(xt y)\ ^g 2 60 , 
(|8) for every Q-good 1-simplex a in i£, a(x, y) and b{x, 3/) are meas­

urable functions on a; 
(5) with Q as in (4), there exists a non-negative function H(x, y) 

which is locally in L1 on R such that if r is a Ç-excellent 2-simplex in 
i^ oriented like E2 with two edges parallel to the x and y-axes, then 

/
co ^ I 27 (x, y)dxdy. 

. Or I J T 

W e shall s ay two differential forms co(x, y)=a(x, y)dx+b(x, y)dy 
and coi(x, 3>)=#i(tf, 3>)dx+&i(#, 3>)^y are equiva lent in R if a(x> y) 
= ai(x, y) and b(x, 3;) =5 i (x , y) a lmos t everywhere in R. 

Using ha rmon ic analysis as we h a v e before in similar s i tua t ions 
(see [4] , [5] , and [ó]), we shall establish t he following theorem re­
la t ing local L1 1-cochains and local L1 differential 1-forms: 

THEOREM. There is a 1-1 correspondence between local L1 1-cochains 
in R and equivalence classes of local L1 differential 1-forms in R in the 
following sense: 

(a) Given X a local L1 1-cochain in R, there exists a local Ll differ­
ential 1-form in R, co, and a set Q satisfying (4) and (5) with respect to 
co such that X{a) =/<rCo for every Q-good 1-simplex tr. Furthermore, co is 
unique up to equivalence. 

(b) Given co a local Ll differential 1-form in R and a set Q satisfying 
(4) and (5) with respect to co, there exists a local Ll 1-cochain in R, X, 
such that X(a) =faco for every Q-good 1-simplex a. Furthermore, if co% is 
equivalent to co, it gives rise to the same local L1 1-cochain X. 

Since every flat 1-cochain in R (see [7, p. 6]) is a local L1 1-cochain 
in R and since every flat differential 1-form in R (see [7, p. 263]) is a 
local L1 differential 1-form in R, the theorem given above is an ex­
tension of Wolfe's theorem [7, p. 253 and p. 265] for the special case 
of 1-cochains defined in open sets of the plane. 

2. To establish part (a) of the theorem, we shall suppose from the 
start that if gi and g2 are the given functions satisfying (1) with re­
spect to X and if gi is defined in a neighborhood of x and g2 is defined 
in a neighborhood of y, then 

ƒ» h /* h 

gi(x+t)dt, g2(y) = lim sup hr1 I g2(y+t)dt. 
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This would only alter g\ and g2 on a set of 1-dimensional measure 
zero but would not affect the relationship (1). 

Letting ^(x, y; h) and cr2(x, y\ h) be respectively the 1-simplex 
whose ordered end points are (x, y), (x+h, y) and (x> y), (x, y+h)> 
we define for (x, y) in R and j integer-valued, 

a(x, y) = lim supjXfcr1^, y)j~~x)\ and 
fyj-j-oo 

(7) 
b(x, y) = lim&\xpjX[<r2(x, y ; /" 1 ) ] -

It follows immediately from (1), (6), and (7) that 

(8) for (x, y) in jR, | a(x, y) | g gi(x) and | &(s, y) | g g2(;y). 

We next prove that a(x, y) and b(x, y) are measurable functions 
in R. In order to establish this fact, we need only show that if 5 is a 
closed square with sides parallel to the x and j-axes which is con­
tained in R, then both functions are measurable in S. Consequently, 
with S given, choose S' a closed square such that SC.S'°C.S'C.R 
where S'° designates the interior of S'. Next choose a positive integer 
jo such that for \j\ ^Jo and for (x, y) in 5, <jl(x, y\j~~l) and <r2(x, y;]"1) 
are both in S'. To establish the measurability of a(x, y) and b(x, y), it 
is sufficient to show that for a fixed j with | j | èjo,-^[o^fo ^î j" 1)] and 
X[<r2(x, 3>; j - 1 ) ] are continuous functions when restricted to S. 

We now show that X[al(x, y\ j - 1 ) ] is a continuous function when 
restricted to S with a similar proof prevailing to show that 
X[a2(x, y; j"1)] is a continuous function when restricted to S. 

Let (x0, y0) be a fixed point in S and let e > 0 be given. Choose ôi 
with 0 < o i < l such that if a is a 1-simplex in S' parallel to the x-axis 
and | o-| i<Si, then \fagi(x)dx\ <e. Similarly, choose S2 with 0 < S 2 < 1 
such that if a is a 1-simplex in S' parallel to the 3>-axis and | <r\ i<S2 , 
then \J<rg2(y)dy\ <e . Next, with H(x, y) given by (2), choose S3 with 
0 < ô3 < 1 such that if r is a 2-simplex as described in (2) which is con­
tained in S' (i.e., a right triangle with legs parallel to the x and ;y-axes 
and oriented like E2) and | r | 2 < 5 3 , then fTH(x, y)dxdy<e. Set 
S4 = min(Si, S2, S3). It then follows immediately from the fact that X 
is a 1-cochain which meets conditions (1) and (2) that if a is an arbi­
trary 1-simplex in 5 ' and |<r|i<S4, then |X(flr)| S3e. 

Let N be the first integer greater than the length of the side of S'. 
Set S = 84/iV, and suppose that (x, y) is in S and that the distance be­
tween (xo, 3>o) and (x, y) is less than S. Then on considering the 
parallelogram determined by <7a(xo, yo', j - 1 ) and <rl(x9 y\ j~x) with 
\j\ à jo, it is clear that 
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(9) I X[o\%, y;tl)\ ~ * k ( * o , y tit1)] | S 6e + £ | X(drk) \ 

where rfc, fe= 1, • • • , 4, are right triangles with legs parallel to the x 
and y-axes with \rk\2S^/2 for ife = l, 2 and |T*12^SiV/2 for Jfe = 3, 4. 
We conclude from the choice of ô that the left side of the inequality 
in (9) is majorized by 10e. Consequently, X\<rl(x, 3>; j " 1 ) ] is continu­
ous when restricted to 5 for \j\ ^jo and a(x, y) is a measurable 
function in 5 and therefore in R. Similarly, b(x, y) is a measurable 
function in R. Consequently, it follows from (8) that both a(x, y) and 
b(x, y) are locally in L1 on R. 

Next, using the classical theory of additive functions of an interval 
[3, Chapter 3], it follows from (2) that there exists a function c(x, y) 
which is locally in Ll on R such that if r is a 2-simplex in R as in (2) 
then 

(10) X(dr) = f c(x, y)dxdy. 

Furthermore, it is clear from [3, p. 118] that 

(11) | c(x, y)\ ^ H(x, y) almost everywhere in R. 

We shall designate the closed disc with center (#o, 3>o) and radius h 
by D(xo, yo) h), and for D(x0f y0) h) C. R, the integral 
('irh2)~1fD(x0,v0ih)a(x> y)dxdy by ah(x0l y0). It follows from [3, Chapter 
4] , that there exists a measurable set QCZR with \R — Q| 2 == 0 such 
that for every point (x, 3/) in Q, ah(x, y)—>a(x, y) and bh(x, y)—*b(x, y) 
as h—>0. 

If a is a Q-good 1-simplex contained in R1 we observe that for h 
small, ah(x, y) and bh(x, y) are continuous functions on a. Conse­
quently, it follows from the definition of Q and the fact that a is Q-
good that a(x, y) and b(x, y) are measurable functions on a. Further­
more, it follows from (8) that 

(12) J a(#,;y)|dff| < °° and I \b(x, y) \ dy \ < 0 0 . 

We observe that we have so far shown that the differential form 
o) = a(x, y)dx+b(x1 y)dy meets conditions (3) and (4) in R. I t follows 
from (1) and (7) that 

(13) X(<r) = I co for a in R parallel to the x or y-&xes. 

We now show that 
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(14) X(<r) == J *>, a a Q-good 1-simplex in R. 

By (12), we observe that the right side of (14) is well-defined. To 
establish (14), we suppose that a is fixed and that there exist three 
concentric squares with sides parallel to the x and ^y-axes, 5, S', and 
S", with a in S° and 

5 C ^ / 0 C ^ C S"° C S" C R. 

We let S(x, y; h) designate the square 

S(x, y; h) = {(u, v); x — h^u^x+h, and y — h^v^y+h}, 

and dS(x, y; h) its positively oriented boundary. Then it follows im­
mediately from (10) and (13) that 

(15) I to = I c(xyy)dxdy îorS(x, y) h) C S", 
J dS(x,y;h) J S(x,y,h) 

and consequently that 

(16) Hm f (4/*2)-1 f 
h->0 J tf' •/ ^ 

s(s, y) 
dS(x,y;h) 

dxdy = 0. 

Next, we choose a non-negative function X(x, 3/) which is in class C00 

on E 2 and takes the value one in S and zero in E2 — S'. We then set 
a'(x, y) = X(x, y)a(x, y), b'(x, y) =X(x, y)b(x, y), c'(x, y) = X(x, y)c(x, y) 
+b(x, y)\x(x, y) —a(x, ^)Xy(x, y) for (x, y) in 5 " and a'(x,y) — b'(x,y) 
= c'(x, y ) = 0 for (x, 3/) in E2-S". 

With these definitions, we now show that (16) implies that 

(17) lim f (4/z2)-1 f a ' C ^ O ^ + f t ' C ^ O ^ - c ' C ^ y ) 
ft-»0 •/ #2 I J dS(x,y,h) 

dxdy — Q. 

We first introduce an intermediate square 5 " ' to S' and 5" , Then 
there exists an ho such that for 0<h<h0, 

(18) 
/

(4A2)-1 I a!(u, v)du+b'(u, v)dv-c,{x, y) 

EA J dS(x,y,h) 

= I (4P)"1 I a'(x+u, y+v)du+b'(x+u, y+v) 
dS(0,0;h) 

-c'(x, y) dxdy. 

Setting \(x+u, y+v)=\(x, y)+u\x(x, y)+v\y(x, y)+rj(x, y} u, z/), 
we see that the right side of (18) is majorized by the following sum: 
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J \(x, y) (4A2)-1 i a(x+u, y+v)du+b(x+u, y+v)dv 

S'" I J dS(0,0;h) 

-c(x, y) 

+ I (4A2)"-1 I rj(x, y, u, v) [a(x + u, y + v)du 
J S"'\ J dS(0,0;h) 

+b(x+u, y+v)dv] 

+ I | X*(#, y) | (4/z2)-1 I ua(x+u, y+v)du dxdy 
J S'" I J dS(0,0;h) I 

+ I I Xj,(x, y) I (4/z2)-1 I va(x+u, y+v)du+a(x, y) 
J S"> I «'35(0,0;h) 

+ I | X*(#, y) | (4A2)-1 I wô(#+^, y+v)dv — b(x, y) 

dxdy 

dxdy 

dS(0,0;h) 

dxdy 

dxdy 

+ j I Xy(*, 30 I (4A2)"1 j i*(*+«, y+v)dv 
dS(0,0;h) 

dxdy 

1 2 3 4 5 6 

--Ih + lH + Ih + Ik + Ik + Ik. 

That ll—>0 as A—»0 follows immediately from (16) and the fact 
thatX(x, y)=0 in £ 2 - S ' . 

From Taylor's theorem for functions of several variables, it follows 
that there exists a constant K such that for (x, y) in S,tf and all 
(u, v)y 177(x, ;y, w, z/) | ^K(u2+v2). But then by Fubini's theorem for h 
small, 

il S (4A1)"12JE" { f («* + A*) j f I a(x, y) \ dxdyldu 

+ f (v2 + h2)\ J I b(x, y) j dxdy] dv\ . 

We conclude that if—>0 as A—K). 
Observing that for h small and for almost every (x, y) in S'" 

/
ua(x + ^, y + î>)d^ = I ^[a(# + >̂ ^ + v) ~~ #(x> y)]du, 

dS(0,0;h) dS(0,0;h) 

and letting K\ be a constant such that \\x(x, y)\ SK\ for (x, 3/) in 
JE2, we obtain that for h small 
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| l\ | Û Kii^h2)'1 I \ \ \u\[\a(x + u,y- h) - a(x, y) \ 

+ | a(x + u, y + h) — a(x, y) \ ]du>dxdy. 

We conclude from Fubini's theorem that i|—>0 as h—*0. Next, we 
observe that for h small and almost every (#, y) in S'n', 

(4Â2)"1 f 
•J A 

va(x + uy y -jr v)du + a(x, y) 
dS(0,0;h) 

•Ja 
z;[a(x + u, y + z>) — a(x, y)]du. 

dS(0,0;h) 

Consequently, we can use the same reasoning for 1% as that used 
for II and obtain that I*—»0 as h—»0. 

Handling II in the same manner as It and /£ in the same manner as 
II, we obtain /£—»() and Tj—>0 as h—>0. (17) is therefore established. 

Next, we let â'(x, y), S'(x, y), ê'(x, y) represent respectively the 
Fourier transform of a'(x, y), b'(x, y), and c'(x, 3;), i.e., 

â'(x, y) = (47T2)"1 I a'(u, v)e~^xu+^dudv. 
J E2 

Observing that the Fourier transform of the function 

/
a'(u, v)du + bf(u, v)dv 

dS(x,y;h) 

is 

i[xb'(x, y) — yâ'(x9 y)] I e^+^Uudv, 

we conclude from (17) that 

(19) ô'(x, y) = i[xb'(x, y) - yâf{x, y)]. 

We turn our attention once again to cr, 5, and 5' , and to the estab­
lishing of (14). We can suppose that the squares S and S' are given by 

5 = {(x, y); x0 — p ^ x ^ xo + p, y0 — p ^ y ^ y0 + p}, 

S' = {(x, y) ; x0 — p' ^ x S #0 + p', ^0 - p' ^ y è yo + P'} 

with 0 < p < p ' . 
From (13), we observe that (14) holds if a is parallel to the x or 
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3>-axes. Consequently we can assume that cr is a Q-good oriented line 
segment given by 

y — ax + jö, %i ^ x S %2, 

where a5^0 and Xo—p<Xi<x2<x0+p. We shall also assume that 
a>0, since a similar proof will establish (14) in case a < 0 . 

Next, we define crh to be the oriented line segment y = ax+(3> X\ — h 
^x^x2 — h. Since X is a local L1 1-cochain in R, (1) and (2) imply 
that X(ah)—^X(a) as h—>0. Since a is a Q-good line segment, (12) 
shows that 

ƒ*-*£" as h —> 0. 

Furthermore | 5 — ( 5 n Q ) | 2 = 0. Consequently, by Fubini's theorem, 
with no loss in generality, we can assume from the start that the 
oriented line segments <T\ and <r2 are each Q-good where d and cr2 are 
given as follows: 

<n: #2 s= # è #i, y — OLX2 + /?; 

(r2: x = #i, a#2 + £ è 3> è oiXi = /3. 

If we then designate by r the oriented 2-simplex (oriented like E2) 
having ci, cri, and cr2 as its edges, we obtain that dr = a+ai-\-o-2t 

Next, we set for / > 0 , 

al(x,y) = I âf(uJv)e-^2+v^tei^ux+vv)dudvy 

(20) bi(x,y)=*\ b/(u%v)e~^2+^te^ux+v^dudv, 

cl (oc, y) = I c'(u, v)e-(u2+v2)tei(ux+vv)dudv, 
J El 

and observe that al (x, y), bl (x, 3/), and cl (x, y) are in class C00 on E2. 
Furthermore we obtain from (19) and (20) that 

dbl (x, y) dal (x, y) 
" = cl (x, y), 

dx dy 
and consequently that for £>0, 

(21) I al (x, y)dx + bl (x, y)dy = I c% (x, y)dxdy. 
J dr J T 
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Now, if we can show 

I dl (x, y)dx —» I a'(x, y)dx as t —•> 0, 

I al (%, y)dx —» I a'(x, y)dx as / —> 0, 

I bi (x, y)dy —> I tV(x, 3/^3; as / —» 0, 

I bi (Xj y)dy —» I &'(#, 3;)^ as J —> 0, 

we shall have established (14). For the theory of multiple Fourier 
integrals (see [l, p. 22]) shows that ci (x, y)—*c'(x, y) in the Z^-norm 
on E2. Consequently, taking the limit on both sides of (21) as /—»0, 
we obtain from (22) that 

(23) I a'(x, y)dx + b'(x, y)dy = I c'(x, y)dxdy. 
J Or J T 

But r is contained in 5, and in S, a'(x, y) = a(x, 3;), b'(x, y) = &(x, 3;) 
and c'(x, y) = c(x, y). Therefore (23) implies that 

(24) 1 co = I c(x, y)dxdy. 
J dr J T 

Using (10) and the fact that ÖT = or+0-1+02, we infer from (24) that 

f co + f co + f co = X(dr) = X(a) + X(<n) + X(cr2). 

By (13), however, X(ai)=faio) and X(<T2) =/<r2co; consequently (14) 
will be established, once we show that (22) holds. 

We establish (22) by showing that the first limit in (22) holds. A 
similar procedure will show that the other three limits in (22) hold. 

In order to accomplish this, we designate the indicator function of 
the interval x0 — p ' ^ x ^ x 0 + p ' by Xi(x). Then since X(x, 3;) ^Xi(x) for 
all (x, y) in E2, we obtain from (8) on setting g[(x) = g(x)\i(x) for 
\x — XQ\ ^ p ' and g((x) = 0 for |x — x0 | > p ' that 

(25) I a'(x, y) \ S gl(x) for (x, y) in E\ 

Since ah(x, y)—>a(x, y) as h—->0 for (x, 3;) in Q, we obtain from the 
theory of multiple Fourier integrals (see [2, Chapter 2]) that ai (x, y) 
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—*a'(x, y) for (x, y) in 5°Q. Since <r is Q-good and contained in 5°, we 
have that 

(26) lim ai (%, ax+/3) = a'(x, ax+0) almost everywhere in Xi^x^x2. 
t->o 

By (12), 

J * x2 

| a'(x, ax + 0) | dx < oo. 

From (20) and well-known facts concerning Fourier transforms we 
have that for t>Q, 

/

oo •» oo e~\u\ IU e—\v\"/At 

I a'(x — u, y — v) dudv, 
e~\u\2/4t e~\v\2i\t 

(4TT01/2 (4TT/) 

and consequently from (25) that for / > 0 

ƒ 00 

gi (x - ^ - M 2 / ^ . 
- o o 

Now gl (x) is a non-negative function in Z,1 on — oo <x< oo which 
vanishes for \x — x0 | >p ' . Consequently given e>0 , there exists a 
5i > 0 such that if B is a measurable set on the real line with | B | i <ôi, 
then 

/
gl (x — u)dx < e for all u. 

B 

But then Fubini's theorem and (28) imply that for / > 0 , 

(29) I | ai (x, ax + 0) \ dx < e for | B |i < Ôx. 
J B 

Using EgorofFs theorem, (26), (27), and (29), we obtain 

ai (x, ax + 0)dx = I a'(x, ax + 0)dx. 
xi J xi 

The first limit in (22) is therefore established. A similar procedure 
establishes the other three limits in (22), and as we have shown 
earlier, this establishes (14). 

Summarizing, we have shown that the functions a{x1 y) and b(x> y) 
are measurable in R, that there exist functions gi(x) and gi{y) which 
are locally in L1 on R such that | a(x, y) \ ègi(x) and | b(x> y) \ Sgi{y) 
for every (x> y) in R, and that there exists a measurable set QC.R 
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with l-R — 0|2 = 0 such that if a is a 0"g°°d l-simplex in R, then 
a(xf y) and &(x, y) are measurable on <r and X(o) —JaU where 
o) = a(x, y)dx+b(x, y)dy. 

In order to complete the proof that co is a local L1 differential 1-
form in R, we need only show that if r is a O-excellent 2-simplex in R 
oriented like E2 with two edges parallel to the x and j-axes, then 
I Jdr^\ SjTH{x, y)dxdy where H(x, y) is the function in (2). However, 
this is immediate from (11). For since r is O-excellent, 

/
" " l i 1 I C \ C 

co = I X(dr) I = 11 c(x, y)dxdy ^ I H(x, y)dxdy. 
dr I I J T I J T 

To complete the proof of part (a) of the theorem, we have to show 
that if a>i(x, y) =ai(x, y)dx+bi(x, y)dy is a local L1 differential 1-form 
and Oi is a measurable set in R satisfying (4) and (5) with respect 
to coi, and, furthermore, if 

X(°) = I wi for every Oi-good l-simplex a in R> 

then 

(31) ai(x, y) — a(x, y) and bi(x, y) = b(x, y) almost everywhere in R. 

To establish (31), set Q2 = QQi. Then \R-Q2\2 = 0. Next, let 5 be 
a square with sides parallel to the x and ;y-axes such that S(ZR- Then 
by hypothesis, if a is a 02-good l-simplex contained in S, /aco =/acoi. 
Since both a(x, y) and &i(x, y) are in L1 on 5, we consequently have 
from Fubini's theorem that 

ƒ 1/0+1 f* %0+t 

I [a(x, y) — ai(x, y)]dxdy = 0 if the square S(x0, yo\t) C S. 

But then Lebesgue's theorem [3, p. 118] tells us that a(x, y) = ai(x, y) 
almost everywhere in 5 and therefore almost everywhere in R. Simi­
larly b(x, y) =bi(x, y) almost everywhere in R, (31) is established, and 
the proof of part (a) of the theorem is complete. 

3. We now prove part (b) of the theorem. Let co = a(x, y)dx 
+b(xt y)dy be the given local L1 differential 1-form in R an let Q be 
the measurable set contained in R satisfying (4) and (5). By (3) and 
(4), a(x, y) and b(x, y) are each locally in Ll on R. As before, letting 
D(xo, 3V, h) stand for the disc with center (#0, yo) and radius h, we 
set ah(xo, y0) = ( T T ^ 2 ) " ^ ^ ^ ; &)#(#, y)dxdy and similarly define 
bh(xo, yo). Now, ah(x, y)—>a(x, y) and bh(x, y)—>b(x, y) almost every­
where in R as h—>0. We set 
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(32) ^ = ^ ^ *^; ^ ^ i n ^ ' a^X' ^ "* ^ ' ^ a n d 

bh(x, y) —» 6(#, y) as Z? -~> 0}, 

and note that both | <2-<2'|2 = 0 and | i£-<2 ' | 2 = 0. 
We next establish the following fact: if r is a (/-excellent 2-simplex 

in R oriented like E2 and if H(x, y) is the function given in (5) which 
is locally in L1 on R, then 

(S3) I co ^ I #(#, y)dxdy. 
I «J ÔT I «J T 

It is to be noticed that in (33), r is an arbitrary Q'-excellent 2-
simplex, i.e., we are not restricting it to be a right triangle. 

In establishing (33), we first notice that if follows from (5) that if 
S(x, y; h) (i.e., the square oriented like E2 with center (x> y) and side 
2h) is a (/-excellent square contained in R, then 

(34) f co ^ f #(* , sOdsdy. 
I *^oiS[*,y;A] I ^ £ [x,y; h] 

Next, we introduce four bounded domains Di, D2, Dz and D± with 
r C A C Â C A C Â C A C Â C A C Â a and a non-negative func­
tion X(x, 3>) in class C00 on E2 which takes the value one in D\ and the 
value zero in E2 — D%. We define a'(x, y)=\(x, y)a(x, y) and b'(x, y) 
= X(#, y)b(x, y) where a'(xt y) and &'(#, y) are set equal to zero in 
E2-R. Then we set for *>0, 

a{(x, y) = (47r0_1 I fl'(s - «, y — v)e~(u2+v2)/étdudv, 
JE* 

b!(x, y) = (47T0_1 I 6'(* - u,y - v)e-^2+v2)lududv, 
JE* 

co/ (x, y) = a/ (#, ;y)cfa + 6/ (x, 3>)d;y. 

Since T is (/-excellent, we see from the definition of Q' and well-
known facts concerning the summability of multiple Fourier integrals 
[2, Chapter 2] that a[ (x, y)—>a'(x, y) and b[ (x, y)—>b'(x, y) as t—»0 
almost everywhere in the 1-dimensional sense on dr. We consequently 
infer from (4), using the same technique employed in establishing 
(22), that 

(35) I oot(x, y)—» j <a'(x, y) as2—>0. 
«/dr J dr 
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Next, setting X(x, y)H(x, y) ~\y(x, y)a(x, y) =X*(x, y)b(xt y) = 0 in 
E2—R, we shall establish that for (x, y) in Du 

r) ft 

— h'{*,y) - — <*/(*, y) 
dx dy 

(36) S (ÏTt)"1 I e-(u2+v2)tàt{\(x - u,y - v)H(x - u,y - v) 

+ | Aw(# — u, y — v)b(x — u,y — v) 

— \v(x — uyy — v)a(x — u, y — v) \ \dudv. 

We observe that once (36) is established, (33) follows. For the 
right side of (36) tends in Z^-norm on E2 to X(x, y)H(x, y) 
— |Xx(x, y)b(x> y) —\(x1 y)a(x, y) | as t—>0 and this function is equal 
to H(x, y) for (x, y) in r. We consequently conclude from (36) that 

/

• I d 5 I f 

— b[ (x, y) a% (x, y) \dxdy S I H(x, y)dxdy. 
T I dx dy I J T 

However, since co/ (x, y) is a differential form in class C00, we con­
clude from Stoke's theorem and (37) that 

(38) Km I co/ (x, 31) g I i7(x, y)dxdy. 

But then using (35) and the fact that o/(x, y) = co(x, y) in a domain 
containing r, we obtain (33) from (38). 

We now proceed with the establishing of (36). In the ensuing 
discussion, we shall set for / > 0 , 

Nt(u, v) = e~^+^^/(^t)-\ 

Fix (XQ, y0) in Di and let fey equal the distance between Dj and the 
boundary of .Dy+i, j= 1, 2, 3, and set feo = min(fei, fe2, fes)/4. 

Then for 0<fe<feo, 

/
u/(x, y) = I iV*(#, z>) I <*/(# — «, ^ — ») dwdz> 

= Iith + -̂ 2,̂  

where 

A,/» = I Nt(u, v)\(xo — u, yo — v)\ I co(x — u,y — v) dudv 
J E* L«J dS[zo,vQ;h] J 

and 

file:///dudv
file:///dxdy
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h,h = I Nt(u, v) < I [\(x — u,y — v) - X(x0 — «,?<> — v)] 

•co(# — u, y — v) f dudv. 

It is clear from Stokes' theorem and the fact that co/ is a differential 
form in class C™ that 

dbl (xo, yo) dal (#0, 3>o) 

dx d;y 
^ 11m sup h hm sup • 

^ 0 4Ji2 n-*o Ah2 

Therefore to establish (36), we need only show that 

limsup I Ii,h\/4:h2 

7»-X) 

(39) 
< 

{ E2 

and that 

/
Nt(u, v)X(xo — u, yo — v)H(x0 — u, y0 — v)dudv 

E2 

Hm sup I I2,h I /4A2 ^ I iV*(«, v) I Aw(x0—^, ^0—v)b(x0—u, y0—v) 

(40) , 
— Xv(̂ o — u, y0—v)a(xo—u, yo—v)\ dudv. 

We observe that 

Iith = I Nt(u — x0,v — yo)\(u, v) I w(x, y) dudv 
J E2 Lts dS(u,v,h) J 

= I Nt(u — xo, v — yo)\(u, v) I o)(xy y) dudv. 
J D2 L-J dS(u,v;h) J 

But for almost every (uy v) in D2> S(u> v\h) is Q'-excellent. Conse­
quently, from (34) we obtain that 

I Ii.h I S I Nt(u - xo, v - 3>o)AK v) 

(41) 

I # ( # + u,y + u)dxdy dudv. 
L.J S(o,0;h) J 

But then (39) follows immediately from (41) on observing that 

(4A2)~1 I H(x+u,y+v)dxdy—*H(u, v) as A—>0 in the Z^-norm on D%. 
J S(0,0; h) 

To establish (40), we observe that 
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Ii,h = I Nt(u — Xo9 v — yo) 

(42) 

U [\(x + u, y + v) — \(u, v)]œ(x + u, y + v) > dudv. 
dS(0,0;h) ) 

Next, we set 

\(x + u, y + v) — X(^, v) = \u(u, v)x + \v(u, v)y + ri(x, y, uf v) 

and obtain that there is a constant K such that 

I v(x> y y u>v)\ = K(x2 + y2) for all (#, 3;) and (u, v). 

Observing that 

= 0Q12) as h —» 0, 

we conclude from (42) that 

Ï2,h = I Nt(u — #0, w ~ yo) 

• < I [XM( ,̂ *;)# + X„(^, ̂ )^]co(a; + u,y + v)> dudv 
\J dS(0t0;h) / 

X>3 

(43) 

+ <?(/*2). 

We next observe that 

I iV*(« — x0, v — yo)K(u, v) 

W dS(0,0;A) / 

and conclude from (43) that 

^2.* = h,h + Ö(A2) where 

(44) I%,h = I #*(« ~~ x0)v — yo) < I X,(«, t>)ya(a; + «, 3> + v)dx 
J D3 W d5(0,0; A) 

+ XM(#, v)xb(x + u, y + v)dy> dudv. 

Setting 
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(45) M = I Nt(u — Xo, v — y0) [—Xt>(w, u)<z(w, z>) + Xw(w, A)Ô(W, v)]i^z;, 

we observe that 

(W)"lIt.h - M = (4/*2)"1 f # , (« - *0, » - yo) 

• % I \v(u} v)y[a(x + u, y + v) — a(u, v)]dx 
W dS(0,0;h) 

+ X«(w, fl)#[K# + w, 3; + v) — ô(^, v)]rfy> dudv. 

We conclude from Fubini's theorem that 

(46) lira (W)-lIZth = M. 
7»->0 

But (44), (45), and (46) give us (40). Consequently, (36) and there­
fore (33) is established. 

We now proceed with the proof of part (b) of the theorem. 
Letting <rn= (pny qn) designate the line segment oriented from pn to 

qn, we shall say {<rn}~»i is a Cauchy sequence in R if there exists a 
convex, compact subset C of R such that <rn lies in C for each n and 
if {pn}n=i and {ün}n=i are Cauchy sequences with respect to the 
usual metric in E2 . We say that the sequence {crn}^ tends to the 1-
simplex cro=(£o, #0) and write crn-^(Xç) as n—*oo if pn—*p0 and qn—>g0. 
I t is now clear that if {<rn }%=1 is a Cauchy sequence in R, there exists 
a 1-simplex ao such that crn—><ro as w—>oo. 

From (4) and the definition of <2', it follows that if o* is a Q'-good 
1-simplex in R, then f<r\a(x, y)\dx< 00 and ƒ*!&(#> y ) | ^ y < °°. Con­
sequently, if a* is a Q'-good 1-simplex in R, we define X(a) =fffo) and 
establish the following fact: 

(47) if {örn}^=1 is a Cauchy sequence of Ç'-good 1-simplices in i?, 
then {X(crn)}%=1 is a Cauchy sequence of real numbers. 

Since there exists (XQ = (po, qo) in R such that <rn—>CTO as w—>«>, we 
can suppose from the start in establishing (47) that there exists a 
compact convex CQR such that crn is in C° for # = 0, 1, 2, • • • . 

Next, let Xxtkxlkxi and yi ^ y S y* be the smallest rectangle with 
sides parallel to the x and j-axes containing C. Then with gi(x) and 
&(y) given by (4), we have that 

gi(x)dx < 00 and I gi(y)dy < 00. 
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Set K=[(x2-x1)
2 + (y2-y1)

2]1ii and let e > 0 be given. Choose 
ô > 0 such that if \xd — #4| ^ ô and if \y^ — y±\ ^8 with Xiéx^^Xi^x2 

and yittkyz^yi^yi, then 

gx(x)dx < e and I g*(y)dy < e, 
- 3 J VZ 

and furthermore such that if r is a 2-simplex contained in C and 
oriented like E2 with | T\ 2 â ô and if H(x1 y) is given by (5), then 

(49) I H(x, y)dxdy < e. 

Next, choose no sufficiently large so that for n ^ no, 

| pn ~ £o| ^ min [5/4(i£ + 1), | <r0 | i /8] and 

Un - 2o | ^ min [8/4(X + 1), | cr0 | i /8]. 

We propose to show that 

(50) | X(crm) — X(an) | ^ 14e for m and w ^ ^0, 

which fact will establish (47). 
First, suppose that the 1-simplices (pm, pn), (qn, qm), and (pm, qn) 

are also Ç'-good. (Notice that because of convexity, these last three 
simplices also lie in C.) Then 

| X(am) - X(*n) | 

^ I X(pm, qm) + X(qm, qn) + X(qn, pm) \ 

+ | X(pm, qn) + X(qn, pn) + X(pn, pm) | 

+ \X(qn,qm)\ + \X(pm,pH)\. 

Observing that the (/-excellent oriented 2-simplex whose oriented 
boundary is given by (pm, qm) + (qm, qn) + (qn, pm) has an area bounded 
by Kô/4:(K+1) with a similar remark holding for the other 2-simplex 
whose boundary is given by (pm, qn) + (qn, Pn) + (pn, pm), we conclude 
from (33), (49) and (48) that \X(crm)-X(<rn)\ <6e if m and n^n0. 
(50) is therefore established in this case. 

Next, suppose that at least one of the 1-simplices (pm, pn), (qni qm), 
(pm, qn) is not Q'-good. Since (rm and <rn are each Q'-good, it follows 
from the choice of no that <rm and <rn are not collinear; consequently, 
we can replace pn by pr! and qn by qn' where pn and qn' each lie on 
<rn and neither lie on the line determined by <xm and where \pn—pl \ 
and | qn — qn | are both less than min [§/4(i£ + l ) , | cr0| i /8] . Then with 
°*» ^ (Pn , qn), we have that <rn

f is Q'-good and furthermore that 
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(51) \X(*i) - X(an)\ <4e. 

Next, using Fubini's theorem, choose pf
m and q'm on am such that 

(pn , P'n), (<Zn, p'm), and (<?,/, g'm) are each Q'-good and such that 
both \pm — pm\ and \qm~ q_'m\ are less than min[S/4(i£ + l ) , |<rn | i /8]. 
Then with <Tm=(p'm, #'m), we have that cr'm is Q'-good and furthermore 
that 

(52) \X(<rJi) -X(<rm)\ < 4 e . 

But now from the first case considered, |X(tf-'m) — X(<rn')\ <6e. 
This fact combined with (51) and (52) gives us (50), and consequently 
(47). 

If or is a Q'-good simplex in R and if {a^j^x is a Cauchy sequence 
of Q'-good 1-simplices in R with (rw—»<r as n—» <*>, it is clear from (47) 
that X(an)—»X((r) as n—>oo. On the other hand, if a is a 1-simplex in 
R which is not Q'-good, we can use (47) to define X(<j). In particular, 
if a is such a 1-simplex, we can by Fubini's theorem always find a 
Cauchy sequence of Q'-good 1-simplices {crn}n^i m R such that an-^<j. 
By (47), l ining X(an) exists. We define X(a) =limn^oo X(<rn). It is 
clear from (47) that X(a) is well defined, that X( — a) = — X(o), and 
furthermore that if a = a±+ • • • +<rn where c, ÖI, • • • , an are col-
linear and similarly oriented, that X(o) =X(<Xi)+ • • • -\-X(<rn). 
Consequently, X is a 1-cochain in R. 

To show that X is a local L1 1-cochain in R, we first observe that if 
a is a Q'-good 1-simplex in i£ parallel to and oriented like the x-axis, 
then 

I X(o-)\ = I a(x, ;y)dx ^ I gi(x)dx. 
\ J <r I ^ <r 

If <7 is a 1-simplex in R parallel to and oriented like the x-axis but 
not Q'-good, then, using Fubini's theorem, we select a Cauchy se­
quence {<rn}n=i of Q'-good 1-simplices in R which are parallel and 
oriented like the x-axis and furthermore such that <rn—>cr as n—»<*>. 
Then X(an)—>X(<x) and f<rngi(x)dx—>f(Xgi(x)dx. Consequently, |X(cr)| 
?èf<rgi(oc)dx. We conclude that (1) holds for X. 

If r is a Q'-excellent 2-simplex in R oriented like JS2, then by (33), 

(53) | X(dr) | = I œ ^ I H(x7 y)dxdy. 
M dr I J T 

If r is a 2-simplex in R oriented like E 2 but not Q'-excellent and 
3 r = ( £ , <?) + (<z, r) + (r, p)} we select, using Fubini's theorem, a se­
quence of Q'-excellent 2-simplices, {rn}^Li, with r » 0 " and each 
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oriented like E2 and such that drn=(pn, qn) + (qn, rn) + (rni pn) with 
Pn~*p, Qn—>(L, and rn—*r as n—»<*>. Then from the definition of X, 
X(drn)—>X(ör). Furthermore, since H(x, y) is locally in L1 on R, 
fTnH(x, y)dxdy—>fTH(x, y)dxdy. We conclude from (53) that |X(dr ) | 
^fTH(x, y)dxdy. Therefore (2) holds, and we have shown that X is 
a local Ll 1-cochain in R. 

We next have to show that X(a) —f^ if cr is a Ç-good 1-simplex in 
R. First suppose a is a Q-good 1-simplex in R parallel to the x-axis, 
say (T= (p, q) where p= (x0, 3>o) and q = (xi, y0). With no loss in gen­
erality, we can assume by Fubini's theorem, (1), and (4), that there 
exists an ho such that the two 1-simplices parallel to the ;y-axis whose 
ordered end points are given by (x0, yo), (x0, yo+ho), and (xh y0), 
(xu yo+ho) are each Ç'-good. Call these 1-simplices <jr and cr", respec­
tively. Then it follows that there exists a Cauchy sequence of Q'-good 
1-simplices in R, {<rn}Z-i, with the following properties: (rn~^a as 
n—> 00 , and the end points of each an lie on <r' and a"'. By definition, 
X(a) =limWH.0O X(an). On the other hand, it follows from (4) and (5) 
that lim^oo fanœ = faœ. Also, by definition X(<rn) — fffno). We conclude 
that X(a) = fao). 

Similarly, if a is a Q-good 1-simplex in R parallel to the y-a,xis, 
X{a)=J0w. 

Next, let cr be a Q-good 1-simplex in R which is not Q'-good and 
which is not parallel to either the x or 3>-axes. In particular, let a be the 
oriented 1-simplex: y*=ax+f3} XiSxSx^ where a>0. (A similar argu­
ment will prevail in the case a<0.) With no loss in generality, we 
also can suppose that the rectangle {(x, y)\ X i ^ x g x 2 and axi+PSy 
^ax 2+j8} is contained in R and furthermore that the two 1-simplices 
whose ordered end points are (xh aXx+jS), (x2) axi+ft) and (x2, ceXi+/3), 
(x2, aX2+j8) are each Q'-good. 

Next, using Fubini's theorem, we select a double sequence of points 
{#*}, fe = 0, • • • , n and w = l, 2, • • • with the following properties: 

\i) X\== XQ <S.XI < > . • • • "Cxn — X2] 

(ii) the 1-simplices oj and <r'£+1 whose ordered end points are re­
spectively (aj, axJ+/3), (a£+i, axl+P) and (*J+1, axl+fi) and 
(*t+n a*J+i+j8) are each <2'-good; 

(iii) the 2-simplices r j oriented like E2 and determined by cr£ and 
oi+x are such that limnH>0o Z)£o | ^ | a = 0. 

We observe from properties (i), (ii), and (iii) that 

(54) E X(al) + J2 XiaÇ) - X(a) = £ X(örl). 

However, X is a local Lx-cochain in R. Therefore 
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and we conclude from property (iii) and (54) that 

(55) X(a) = lim !" E X(°l) + E ^ i " ) ] . 

Similarly, 

and by (5) 

n—l /» n /» /» n—1 /» 

E f «+EJ «-f» = Ej drk
n 

drk' 

We conclude, as before, that 

/
co â I H(x, y)dxdy. 

(56) f co = lim [ E f co + E f col. 
J , n-*oo L k=oJ<xk

n k=\J <xk'
n J 

But by property (ii) and the definition of X, 

X((rl) = I co and X^I") = I CO. 

We therefore obtain from (55) and (56) that X(a-)=fao). We con­
clude that X(a) =/aco for every Ç-good 1-simplex <r in R. 

To complete the proof of part (b) of the theorem we have to show 
that if coi is a local L1 differential 1-form in R which is equivalent to 
co and if coi gives rise to the local L1 1-cochain in R designated by Xu 
then 

(57) X{o) = Xi(cr) for every 1-simplex a in R. 

To establish (57), let coi(x, y)=ax(x, y)dx+bi(x, y)dy. Let Qi and 
Ql play the analogous roles for coi that Q and Q' play for co. Let 
(?2 = Q'(?i. Then, | i^ — ^ l 2 = 0. Furthermore, since a(x, y)=ai(x, y) 
and &(x, y) = &i(x, y) almost everywhere in R, we have that for (XQ, yo) 
in.R and &>0 and small, ah(xof yo) = a?(xo, yo) and &^(x0, 3>o) =&î(xo, ̂ o). 
We conclude from the definition of Q2, Q\ and Q{, that a(x, 3O 
= di(x, y) and 6(x, 3O = &i(x, 3O for (x, 3;) in Ç2. But if cr is a ft-good 
1-simplex in Ry X(a) = /aco, Xi(tr) = JVcoi, and /<rCo =/,coi. Consequently, 

(58) -^(Ö") = -̂ 1(0") for every ()2-good 1-simplex cr in JR. 
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If cr is an arbitrary 1-simplex in R, there exists a Cauchy sequence 
of Q2-good 1-simplices in R, {<rn}n-i, such that an—>cr as n—><*>. But 
then X(o-) = limn^oo X(<rn) and X\(o) = limn.*oo Xi(an), and (57) follows 
immediately from (58). The proof of part (b) of the theorem is com­
plete. 

We conclude with the remark that the methods and techniques 
used here can be employed to obtain similar results for r-cochains 
in En. 
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