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An equivalence relation a on a semigroup S is called a congruence 
if a crb and cad imply (ac)cr (bd), for all a, b} c, d £ S . There is a fairly 
obvious correspondence between congruences on 5 and homomorphic 
images of S. For notational convenience we shall denote by S' the semi­
group 5 with an identity element (if one is not already present) 
adjoined. 

If aÇzSj there is at least one congruence (viz., the identity relation, 
having a single element in each of its equivalence classes) for which 
{a} is an equivalence class. Teissier [5] has essentially shown that 
this congruence is the only one having {a} as a class if and only if: 

,.* For each &, cÇzS with b^c, there exist x, yÇiS' 
such that exactly one of the pair xby1 xcy equals a. 

We shall call S disjunctive if (1) holds for all a<E.S. Thus we may say 
that a disjunctive semigroup is characterized by the property that 
the identity relation is uniquely determined by each of its classes. 

Now suppose a and p are congruences on S. We define a relation 
crop, called the product of a and p, by: a (a o p) b if and only if 
a cr x and x pb for some x(E.S. The assumption that every pair <r, p 
of congruences on S is permutable (in the sense that a o p = p o a) has 
a number of interesting consequences, e.g., an analogue of the Jordan-
Holder Theorem, in which one speaks of chains of congruences in 
place of chains of subgroups. See Birkhoff [ l ] , Chapter VI (especially 
Theorem 5, page 87), where further references are given. 

It is easy to see that the two conditions which we have considered 
(viz., disjunctivity and congruence-permutability) are not equiva­
lent. For let S— {l, 2, • • • , n}, where n^3> with the semigroup 
operation given by: x o y = x+y if x+y^n, xoy = n if x+y>n. 
Then 5 is congruence-permutable, but not disjunctive. 

A family V of semigroups is called a variety of semigroups if V con­
tains all subsemigroups, all homomorphic images, and all direct prod-

1 The results reported here were contained in the author's dissertation (Tulane 
University, 1960) written under the direction of Professor A. H. Clifford. 
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ucts of elements of V. Malcev [3] studied varieties of general alge­
braic systems, and raised the question whether, for a variety, dis-
junctivity is equivalent to congruence-permutability. Thurston [ô] 
has shown that, for general algebraic systems, the answer is no. The 
purpose of this note is to announce the following : 

THEOREM. Let V be a variety of semigroups. Then each SEV is dis­
junctive if and only if each SEV is congruence-permutable. 

To prove this, one first shows that a disjunctive semigroup of more 
than two elements either is simple (i.e., contains no ideals except S 
itself) or is 0-simple (i.e., contains a zero element 0, and no ideals 
except 5 and {0} ), and then that a semigroup belonging to a disjunc­
tive variety must be a periodic group. Next, it is easy to see that in a 
congruence-permutable semigroup the ideals form a chain under in­
clusion. Then one shows that a semigroup belonging to congruence-
permutable variety must be simple, and finally must be a periodic 
group. Thus, one can conclude that for a variety V of semigroups the 
following are equivalent: each SE V is disjunctive, each SE V is con­
gruence-permutable, each SE V is a group, each SE F is a periodic 
group. 

At several points in the proof known results of semigroup theory 
(chiefly from Rees [4] and Clifford [2]) are used. Also, some steps 
can be shortened by using theorems of Malcev [3] and Thurston [ô] 
concerning varieties of general algebraic systems. 
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