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1. Introduction. Brown [l] has shown that an 5 n _ 1 embedded in a 
locally flat manner in Sn is flat and hence tame in Sn. Bing [2] and 
Moise [3] have shown that locally tame subsets of 3-manifolds are 
tame. However, in the general case, it is not known whether a mani­
fold N embedded in a locally flat manner in a triangulated manifold 
M or a polyhedron P embedded in a locally tame manner in a triangu­
lated manifold M are tame in M. Partial solutions to both of these 
problems have been obtained by the author and will be stated in §3 
of this paper. I have been informed by R. H. Bing that Herman 
Gluck has obtained similar results. 

2. Definitions and notations. Let Nk be a combinatorial &-mani-
fold. Then (Nk)r will denote the rth barycentric subdivision of Nk. 
If a is a ^-simplex of (Nk)r and a" is the union of all simplexes of 
(Nk)r+2 contained in a, then Ca will denote the closed simplicial neigh­
borhood of \a"\, the polyhedron of a " , in (Nk)r+2. That is Ca is the 
union of all closed simplexes in (Nk)r+2 that meet | a " | . Since a" is 
collapsible, Ca is a combinatorial &-ball [4]. 

The statement that ƒ is a locally flat embedding of a fe-manifold 
Nk in an ^-manifold Nn, means that each point of f(Nk) has a neigh­
borhood U in Nn such that the pair (£/, UT\f(Nk)) is homeomorphic 
to the pair (Rn, Rk). 

Two definitions of locally tame will now be given. 
DEFINITION 1. Let N be a manifold topologically embedded in a 

triangulated manifold M. N is locally tame if for each point p of iV, 
there exists a neighborhood U of p in M and a homeomorphism h of 
U into M, such that h[C\(Ur\N)] is a polyhedron in M. 

DEFINITION 2. Let P be a polyhedron topologically embedded in a 
triangulated manifold M. P is locally tame if for each point p of P , 
there exists a neighborhood U of p in M and a homeomorphism h 
of U into ikf, such that h\ CI(£/P\P) is piecewise linear with respect 
to a fixed triangulation T of P. 

Let K be a complex topologically embedded by ƒ in a triangulated 
w-manifold Nn and let e>0 . Suppose there exists an e-homeomorphism 
h of Nn onto itself such that if Ue(J(K)) denotes the set of points in 
Nn whose distance from f(K) is less than e, then 
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(i) h\N»-U.(f(K)) = l9 

(ii) hf: K—>Nn is a piecewise linear embedding. 
Then f(K) will be said to be €-tame in Nn. 

3. Statement of results. 

THEOREM 1. Let f be a locally flat embedding of a closed combinatorial 
k-manifold Nk in a closed combinatorial n-manifold Nn, 2k-\-2^n and 
e>0 . Thenf(Nh) is e-tame in Nn. 

THEOREM 2. Letfi and f2 be locally flat (locally tame) embeddings of a 
closed combinatorial k-manifold Nk (finite k-polyhedron Pk) in Sn and 
2k + 2^n. Then there exists a homeomorphism h of Sn onto itself such 
that hfi =/2 . 

THEOREM 3. Let f be a locally flat embedding of a k-manifold Nk in a 
combinatorial n-manifold Nn and 2k + 2^n. Thenf(Nh) is locally tame 
(Definition 1). 

THEOREM 4. Let f be a locally tame (Definition 2) embedding of a 
possibly infinite k-polyhedron Ph as a closed subset of the interior of a com­
binatorial n-manifold Nn, 2k+2^n and e > 0 . Then f(Pk) is e-tame 
in Nn. 

4. Reference theorems. 

HOMMA'S THEOREM [5]. Let Mn, Mn and Pk be two finite combina­
torial n-manifolds and a finite polyhedron such that Mn is topologically 
embedded in Mn, Pk is piecewise linearly embedded in Int(Afw) and 
2k+ 2 ̂ n. Then for €>0 , Pk is e-tame in Mn. 

GLUCK'S MODIFICATION OF HOMMA'S THEOREM [ó]. Let the following 
be given: 

(i) Mn, a possibly noncompact combinatorial n-manifold; 
(ii) Ên, a possibly noncompact combinatorial n-manifold, topologi­

cally embedded in Mn ; 
(iii) Pk, a possibly infinite polyhedron, piecewise linearly embedded 

as a closed subset of Int(Mw) ; 
(iv) Z, a subpolyhedron of Pk such that C\(Pk-~L) is a finite poly­

hedron, and such that L is piecewise linearly embedded in Mn as well as 
in Mn. 

If 2k+2^n, then for any e>0, there is an e-homeomorphism F of 
Mn onto Mn such that under F, Pk — L is e-tame in Mn and F\ L = 1. 

5. Partial proofs of results. 

LEMMA 1. Suppose the following are given: 
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(i) The hypotheses of Theorem 1 are satisfied. 
(ii) {(Ui, Uir\f(Nk)), i = l , • • • , q] is a finite open cover of f(Nk) 

obtained by applying the definition of locally flat. 
(iii) €>0 . 

Then there exists an integer r such that if a is a k-simplex of (Nk)r and 
ifCfM=f(Ca), 

(a) / W C C / ( a ) C U,r\f(N*) for some j . 
(b) C/(a) is e-tame in Nn. 

Conclusion (a) is obvious since every open cover of a compact met­
ric space has a Lebesgue number and the limit of the mesh oîf(Nk)i 

as i approaches infinity is zero. 
Let r and j be integers such that conclusion (a) is true. Let hj be 

the homeomorphism of (£/>, U3r\f(Nk)) onto (Rn, Rk). Since Ca is a 
bicollared [ l ] k — 1 sphere in Nk, hj(f(Ca)) is a bicollared k — 1 sphere 
in Rk. Hence A/(C/<«)) is a tame &-cell in Rk and therefore U$ can be tri­
angulated as a combinatorial w-manifold in such a way t h a t / : Ca—*Uj 
is a piecewise linear embedding. 

We now apply Homma's theorem. Let Mn — Nn, Mn = a closed regu­
lar neighborhood of C/(«) in U, and Pk = Cf(a). Homma's theorem as­
serts that C/(a) is e-tame in Nn. 

PROOF OF THEOREM 1. Let r be an integer such that if a is a &-
simplex of (iV*)r, Lemma 1 is valid. Let At denote the proposition that 
if Ki is a connected homogeneous &-subcomplex of (Nh)r containing i 
&-simplexes, then ƒ (Ki) is c-tame in Nn for each e>0 . It suffices to 
show that Ai is true for each positive integer i. 

Ai is true by Lemma 1. Suppose Ai is true for 1 ^i^j. Let Kj+X be 
a connected homogeneous fe-subcomplex of (Nk)r containing j+1 
&-simplexes. Then Kj+\ — Kj\Ja, where Kj is a connected homo­
geneous &-subcomplex of (Nk)r containing j fe-simplexes and a is a 
^-simplex of (Nk)r. Let € > 0 and e' = c/2, then by assumption, ƒ (Kj) 
is e'-tame in Nn and by Lemma 1, C/(a> is e'-tame in Nn. 

Let hk and ha be the e'-homeomorphisms for f(Kj) and C/(«) respec­
tively such that they are e'-tame in Nn. Let Ua be an open ball neigh­
borhood of h*(Cf(a)) in Nn, and Wa^h*-l(Ua). 

We will complete the proof of Aj+i by applying Gluck's modifica­
tion of Homma's theorem. Let Mn = hk(wa) triangulated as an open 
subset of Nn, Mn = hk(Wa) triangulated as a combinatorial w-mani-
fold such that hkf: Ca--*hk(Wa) is a piecewise linear embedding. Take 
Pk = hk [Cf(a)r\f(Kj) ]Vhk(f(a)) and I = hk [Cf(a)r\f(Kj) ].^By choice of 
hk, t is piecewise linearly embedded in both Mn and Mn. Let e" be 
picked such that 0 < e " < e ' and such that [ Ut» (hk(f(a))) ]f^hk(f(Kj))C t 
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and Cl[Ue»(hk(f(a)))]Chk(Wa). The hypotheses of Gluck's the­
orem are satisfied, hence there exists an e"-homeomorphism g of 
Mn onto itself such that Ph — L\$ e"-tame in Mn under g and g\ L = 1. 
g, which is the identity on hk[f(Kj)r\Wa] and near the boundary of 
hk(Wa), may be extended via the identity to an €"-homeomorphism 
g of Nn onto itself. 

Then F~ghk is an €-homeomorphism of Nn onto itself, such that 
under F,f(Kj+i) is €-tame in Nn. Thus A3-+i is true and by induction 
the theorem is proved. 

Theorems 1 and 4 reduce the proof of Theorem 2 to the piecewise 
linear case which has already been handled in [7], 

The proof of Theorem 3 is an easy application of Homma's theorem. 
The following lemma also follows from Homma's theorem. 

LEMMA 2. Suppose the following are given: 
(i) The hypotheses of Theorem 4 are satisfied except Pk is finite. 
(ii) {(f/x, Uxr\f(Pk), X = l , • • • , q} is a finite open cover of f(Pk) 

obtained by applying Definition 2 of locally tame. 
(iii) e > 0 . 

Then there exists a triangulation of f{Pk) such that the closed simplicial 
neighborhood of any simplex in this triangulation of f(Pk) is contained 
in UjC\f{Pk) for some j and is e-tame in Nn. 

Lemma 2, together with Gluck's modification of Homma's theo­
rem are sufficient to prove Theorem 4. 

Actually, Lemma 1 shows that locally flat closed combinatorial 
manifolds with the correct codimension are locally tame according to 
Definition 2. This, together with Theorem 4, would yield Theorem 1 
as a corollary. 
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