LOCALLY FLAT, LOCALLY TAME, AND TAME EMBEDDINGS

BY CHARLES GREATHOUSE

Communicated by Deane Montgomery, May 23, 1963

- 1. Introduction. Brown [1] has shown that an S^{n-1} embedded in a locally flat manner in S^n is flat and hence tame in S^n . Bing [2] and Moise [3] have shown that locally tame subsets of 3-manifolds are tame. However, in the general case, it is not known whether a manifold N embedded in a locally flat manner in a triangulated manifold M or a polyhedron P embedded in a locally tame manner in a triangulated manifold M are tame in M. Partial solutions to both of these problems have been obtained by the author and will be stated in §3 of this paper. I have been informed by R. H. Bing that Herman Gluck has obtained similar results.
- 2. **Definitions and notations.** Let N^k be a combinatorial k-manifold. Then $(N^k)^r$ will denote the rth barycentric subdivision of N^k . If α is a k-simplex of $(N^k)^r$ and α'' is the union of all simplexes of $(N^k)^{r+2}$ contained in α , then C_{α} will denote the closed simplicial neighborhood of $|\alpha''|$, the polyhedron of α'' , in $(N^k)^{r+2}$. That is C_{α} is the union of all closed simplexes in $(N^k)^{r+2}$ that meet $|\alpha''|$. Since α'' is collapsible, C_{α} is a combinatorial k-ball [4].

The statement that f is a locally flat embedding of a k-manifold N^k in an n-manifold N^n , means that each point of $f(N^k)$ has a neighborhood U in N^n such that the pair $(U, U \cap f(N^k))$ is homeomorphic to the pair (R^n, R^k) .

Two definitions of locally tame will now be given.

DEFINITION 1. Let N be a manifold topologically embedded in a triangulated manifold M. N is locally tame if for each point p of N, there exists a neighborhood U of p in M and a homeomorphism h of \overline{U} into M, such that $h[Cl(U \cap N)]$ is a polyhedron in M.

DEFINITION 2. Let P be a polyhedron topologically embedded in a triangulated manifold M. P is locally tame if for each point p of P, there exists a neighborhood U of p in M and a homeomorphism h of \overline{U} into M, such that $h \mid \operatorname{Cl}(U \cap P)$ is piecewise linear with respect to a fixed triangulation T of P.

Let K be a complex topologically embedded by f in a triangulated n-manifold N^n and let $\epsilon > 0$. Suppose there exists an ϵ -homeomorphism h of N^n onto itself such that if $U_{\epsilon}(f(K))$ denotes the set of points in N^n whose distance from f(K) is less than ϵ , then

- (i) $h | N^n U_{\epsilon}(f(K)) = 1$,
- (ii) $hf: K \rightarrow N^n$ is a piecewise linear embedding. Then f(K) will be said to be ϵ -tame in N^n .

3. Statement of results.

Theorem 1. Let f be a locally flat embedding of a closed combinatorial k-manifold N^k in a closed combinatorial n-manifold N^n , $2k+2 \le n$ and $\epsilon > 0$. Then $f(N^k)$ is ϵ -tame in N^n .

THEOREM 2. Let f_1 and f_2 be locally flat (locally tame) embeddings of a closed combinatorial k-manifold N^k (finite k-polyhedron P^k) in S^n and $2k+2 \le n$. Then there exists a homeomorphism h of S^n onto itself such that $hf_1=f_2$.

THEOREM 3. Let f be a locally flat embedding of a k-manifold N^k in a combinatorial n-manifold N^n and $2k+2 \le n$. Then $f(N^k)$ is locally tame (Definition 1).

THEOREM 4. Let f be a locally tame (Definition 2) embedding of a possibly infinite k-polyhedron P^k as a closed subset of the interior of a combinatorial n-manifold N^n , $2k+2 \le n$ and $\epsilon > 0$. Then $f(P^k)$ is ϵ -tame in N^n .

4. Reference theorems.

HOMMA'S THEOREM [5]. Let M^n , \hat{M}^n and \hat{P}^k be two finite combinatorial n-manifolds and a finite polyhedron such that \hat{M}^n is topologically embedded in M^n , \hat{P}^k is piecewise linearly embedded in $Int(\hat{M}^n)$ and $2k+2 \le n$. Then for $\epsilon > 0$, \hat{P}^k is ϵ -tame in M^n .

GLUCK'S MODIFICATION OF HOMMA'S THEOREM [6]. Let the following be given:

- (i) M^n , a possibly noncompact combinatorial n-manifold;
- (ii) \hat{M}^n , a possibly noncompact combinatorial n-manifold, topologically embedded in M^n ;
- (iii) \hat{P}^k , a possibly infinite polyhedron, piecewise linearly embedded as a closed subset of $Int(\hat{M}^n)$;
- (iv) \hat{L} , a subpolyhedron of \hat{P}^k such that $Cl(\hat{P}^k \hat{L})$ is a finite polyhedron, and such that \hat{L} is piecewise linearly embedded in M^n as well as in \hat{M}^n .

If $2k+2 \le n$, then for any $\epsilon > 0$, there is an ϵ -homeomorphism F of M^n onto M^n such that under F, $\hat{P}^k - \hat{L}$ is ϵ -tame in M^n and $F \mid \hat{L} = 1$.

5. Partial proofs of results.

LEMMA 1. Suppose the following are given:

- (i) The hypotheses of Theorem 1 are satisfied.
- (ii) $\{(U_i, U_i \cap f(N^k)), i = 1, \dots, q\}$ is a finite open cover of $f(N^k)$ obtained by applying the definition of locally flat.
 - (iii) $\epsilon > 0$.

Then there exists an integer r such that if α is a k-simplex of $(N^k)^r$ and if $C_{f(\alpha)} = f(C_{\alpha})$,

- (a) $f(\alpha) \subset C_{f(\alpha)} \subset U_j \cap f(N^k)$ for some j.
- (b) $C_{f(\alpha)}$ is ϵ -tame in N^n .

Conclusion (a) is obvious since every open cover of a compact metric space has a Lebesgue number and the limit of the mesh of $f(N^k)^i$ as i approaches infinity is zero.

Let r and j be integers such that conclusion (a) is true. Let h_j be the homeomorphism of $(U_j, U_j \cap f(N^k))$ onto (R^n, R^k) . Since \dot{C}_{α} is a bicollared [1] k-1 sphere in N^k , $h_j(f(\dot{C}_{\alpha}))$ is a bicollared k-1 sphere in R^k . Hence $h_j(C_{f(\alpha)})$ is a tame k-cell in R^k and therefore U_j can be triangulated as a combinatorial n-manifold in such a way that $f: C_{\alpha} \rightarrow U_j$ is a piecewise linear embedding.

We now apply Homma's theorem. Let $M^n = N^n$, $\hat{M}^n = a$ closed regular neighborhood of $C_{f(\alpha)}$ in U_j and $\hat{P}^k = C_{f(\alpha)}$. Homma's theorem asserts that $C_{f(\alpha)}$ is ϵ -tame in N^n .

PROOF OF THEOREM 1. Let r be an integer such that if α is a k-simplex of $(N^k)^r$, Lemma 1 is valid. Let A_i denote the proposition that if K_i is a connected homogeneous k-subcomplex of $(N^k)^r$ containing i k-simplexes, then $f(K_i)$ is ϵ -tame in N^n for each $\epsilon > 0$. It suffices to show that A_i is true for each positive integer i.

 A_1 is true by Lemma 1. Suppose A_i is true for $1 \le i \le j$. Let K_{j+1} be a connected homogeneous k-subcomplex of $(N^k)^r$ containing j+1 k-simplexes. Then $K_{j+1} = K_j \cup \alpha$, where K_j is a connected homogeneous k-subcomplex of $(N^k)^r$ containing j k-simplexes and α is a k-simplex of $(N^k)^r$. Let $\epsilon > 0$ and $\epsilon' = \epsilon/2$, then by assumption, $f(K_j)$ is ϵ' -tame in N^n and by Lemma 1, $C_{f(\alpha)}$ is ϵ' -tame in N^n .

Let h_k and h_α be the ϵ' -homeomorphisms for $f(K_j)$ and $C_{f(\alpha)}$ respectively such that they are ϵ' -tame in N^n . Let U_α be an open ball neighborhood of $h_\alpha(C_{f(\alpha)})$ in N^n , and $W_\alpha = h_\alpha^{-1}(U_\alpha)$.

We will complete the proof of A_{j+1} by applying Gluck's modification of Homma's theorem. Let $M^n = h_k(w_\alpha)$ triangulated as an open subset of N^n , $\hat{M}^n = h_k(W_\alpha)$ triangulated as a combinatorial n-manifold such that $h_k f : C_\alpha \to h_k(W_\alpha)$ is a piecewise linear embedding. Take $\hat{P}^k = h_k \left[C_{f(\alpha)} \cap f(K_j) \right] \cup h_k(f(\alpha))$ and $\hat{L} = h_k \left[C_{f(\alpha)} \cap f(K_j) \right]$. By choice of h_k , \hat{L} is piecewise linearly embedded in both M^n and \hat{M}^n . Let ϵ'' be picked such that $0 < \epsilon'' < \epsilon'$ and such that $\left[U_{\epsilon''}(h_k(f(\alpha))) \right] \cap h_k(f(K_j)) \subset \hat{L}$

and $\operatorname{Cl} \left[U_{\epsilon''}(h_k(f(\alpha))) \right] \subset h_k(W_{\alpha})$. The hypotheses of Gluck's theorem are satisfied, hence there exists an ϵ'' -homeomorphism g of M^n onto itself such that $\hat{P}^k - \hat{L}$ is ϵ'' -tame in M^n under g and $g \mid \hat{L} = 1$. g, which is the identity on $h_k[f(K_j) \cap W_{\alpha}]$ and near the boundary of $h_k(W_{\alpha})$, may be extended via the identity to an ϵ'' -homeomorphism \bar{g} of N^n onto itself.

Then $F = \bar{g}h_k$ is an ϵ -homeomorphism of N^n onto itself, such that under F, $f(K_{j+1})$ is ϵ -tame in N^n . Thus A_{j+1} is true and by induction the theorem is proved.

Theorems 1 and 4 reduce the proof of Theorem 2 to the piecewise linear case which has already been handled in [7].

The proof of Theorem 3 is an easy application of Homma's theorem. The following lemma also follows from Homma's theorem.

LEMMA 2. Suppose the following are given:

- (i) The hypotheses of Theorem 4 are satisfied except P^k is finite.
- (ii) $\{(U_{\lambda}, U_{\lambda} \cap f(P^{k}), \lambda = 1, \dots, q\}$ is a finite open cover of $f(P^{k})$ obtained by applying Definition 2 of locally tame.
 - (iii) $\epsilon > 0$.

Then there exists a triangulation of $f(P^k)$ such that the closed simplicial neighborhood of any simplex in this triangulation of $f(P^k)$ is contained in $U_i \cap f(P^k)$ for some j and is ϵ -tame in N^n .

Lemma 2, together with Gluck's modification of Homma's theorem are sufficient to prove Theorem 4.

Actually, Lemma 1 shows that locally flat closed combinatorial manifolds with the correct codimension are locally tame according to Definition 2. This, together with Theorem 4, would yield Theorem 1 as a corollary.

References

- 1. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
 - 2. R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158.
- 3. E. E. Moise, Affine structures in 3-manifolds. VIII, Ann. of Math. (2) 59 (1954), 159-170.
- 4. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327.
- 5. T. Homma, On the imbedding of polyhedra in manifolds, Yokohama Math. J. 10 (1962), 5-10.
 - 6. Herman Gluck, Unknotting S1 in S4, Bull. Amer. Math. Soc. 69 (1963), 91-94.
- 7. V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, Proc. London Math. Soc. (3) 3 (1953), 29-53.

FLORIDA STATE UNIVERSITY