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In his thesis of 1929 (see [l]) Herbrand showed how to generate 
effectively from an arbitrary quantificational schema 5 a sequence of 
quantifier-free expressions Ri(S), Ri(S)t • • • , called reductions 
(réduites) of 5, and said that S has property C of order p if RP(S), the 
pth reduction of 5, is truth-functionally valid. (Throughout this 
paper "effective" will mean "primitive recursive." When reductions 
are defined below, the reader should observe that a schema has 
property C of order p only if it has property C for all orders >/>.) 
Herbrand also gave a set of rules of inference, called rules of passage, 
the main point of which is to permit an arbitrary schema to be 
transformed into an equivalent prenex one, and then argued: 

(I) If, for any given p = 1, 2, 3, • • - , a schema S has property C 
of order p, then any schema T obtained from S solely by the rules of 
passage also has property C of the same order p. 

(II) If S and W are any schemata such that S has property C of 
order p and the schema "15 V W has property C of order g, then the 
schema W has property C of order max(£, q). 

(Assertion (I) is Lemma 3 in §3 of Chapter 5 of [l], and assertion 
(II) is Lemma 3 in §5 of the same chapter.) 

On the basis of (I) and (II) Herbrand readily established what he 
called his Fundamental Theorem, varying versions of which are now 
known as Herbrand's Theorem. More specifically, for a particular 
axiomatic system 3C of quantification theory which we shall soon 
describe, Herbrand constructed on the basis of (I) and (II) two effec­
tively computable functions <f> and \f/ such that 

(1) if D(S) is any derivation in 5C of a quantificational schema 5, 
then </>(D(S)) is a truth-functionally valid reduction of S, and 

(2) if RP(S) is any truth-functionally valid reduction of S, then 
\l/(Rp(S)) is a derivation of 5 in 3C in which no use is made of modus 
ponens. 

But (I) and (II) are false. Indeed, after the necessary background 
material has been sketched, we shall show that for each p^3 

(a) there are schemata 5 and T such that T comes from S by just 
one application of one rule of passage and S has property C of order 
3 but T has property C of no order <p, and 

1 With partial support from NSF Grant GP-228. 
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(b) there are schemata S and W such that the schemata S and 
"15 V W each have property C of order 3 but W has property C of 
no order <p. 

The system 5C takes negation, alternation, and both universal 
and existential quantification as primitive, and has as axioms all 
quantifier-free tautologies. Rules of inference are modus ponens, 
generalized simplification (i.e. replace an occurrence of a well-formed 
part PV-P in a derivable schema by an occurrence of P), universal 
generalization, existential generalization, and the following twelve 
rules of passage: 

Rules of passage. Let W and Z be any schemata and let v be any 
variable not occurring in Z. For h = l, * • • , 6, let J^î Kh be the hth 
of the following six ordered pairs of schemata: 

1. l\fvW;BvlWt 

2. 1 BvWtfvlW, 
3. VvWVZi*v(W\/Z)t 

4. ZV\tvWMv(Z\/W), 
5. 3vWVZ;3v(WVZ), 
6. ZV*vW;Bv(Z\/W). 

Also let Je+h\ Ks+h be K^\ Jhf the converse of Jh\ K%. Then a schema 
T will be said to come from a schema S by one application of the ith 
rule of passage (i = l, • • • , 12) if T is the result of replacing one oc­
currence of Ji in S by one occurrence of Ki. The occurrence of Ji in 
question will be called the nub of the application. 

The system 3C just described differs from the main system of Her-
brand's thesis (see pp. 31-32 of [l] and corrections noted on pp. 22-23 
of [2]) in having the rule of generalized simplification in place of the 
rule of simplification, that is, in having the rule of generalized sim­
plification in place of the rule that if SVS is derivable then 5 is 
derivable. (Modus ponens is not eliminable from the main system. 
See p. 117 of [l],) Also, implicit in Herbrand^ formulation of 3C is 
the rule of alphabetic change of bound variables, 

To define the reductions of a schema we first note that any quanti-
ficational schema can be transformed effectively into an equivalent 
rectified schema, that is, into a schema which contains no variable 
occurring both free and bound, and which contains no two occur­
rences of quantifiers with the same variable, Now let S be any such 
rectified schema. Call a bound variable v and its quantifier Qv in 5 
restricted {restreinte) either if Qv is existential and lies within the 
scopes of an even number of negation signs (zero counts as even) or 
if Qv is universal and lies within the scopes of an odd number of 
negation signs. Call all other variables and their quantifiers (if any) 
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in 5 general (générale) ; and call any general variable in S simple if 
it is either a free variable or its quantifier lies within the scope of no 
restricted quantifier, Let y%, * • • , y% be all the distinct general vari­
ables in S; for each i== 1, • • • , tf let Xi,u • • • , Xi,mi be, in some fixed 
order, the variables of the Mi (m^O) distinct restricted quantifiers 
within whose scopes lies the quantifier Qj»; call y$- the functional term 
of yi if yi is simple; call y*[x»,i, • • • , #»,»»*] the functional term of y< 
if y* is not simple; call Xif%, • • • , #»•,»»* the argument terms of 
:y»[ff»\i, • • • , #<,•»<]; and let the functional form F(S) of S be the ex­
pression obtained from S by deleting all general quantifiers in S and 
replacing each general variable by its functional term at each of its 
remaining occurrences. 

For each rectified schema 5 we define the finite sets D\, Z>f, £>f, • • • 
inductively thus : 

(1) The set Pf contains just the numeral " 1 " . 
(2) The set D^+1 contains all members of D^, and in addition all 

those expressions which are obtainable from some functional term in 
F(S) by replacing each argument term (if any) of the functional term 
by some member of D^. 

Note that all simple variables in 5 belong to the set Df ; that if 5 
contains no general variable then D^ is Z>? for all m; that if 5 con­
tains no nonsimple general variable then D^ is JDf for all w ^ 2 ; and 
that if S contains at least one nonsimple general variable then for 
each m the set D^+1 —D^ is not empty. (Herbrand called the set 
Di+t-Di the (m+ l)st field (champ).) 

Now define the reduction RP(F(S)) of F(S) over D% inductively by 
associating with each well-formed part W of F(S) a reduction RP(W) 
over DS

P as follows : 
(1) If W contains neither quantifiers nor truth-functional connec­

tives then RP(W) is W. 
(2) If W is the negation of a well-formed part A of F(S) then 

RP(W) is the negation of RP(A). 
(3) If W is the alternation of well-formed parts A and B of F(S) 

then RP(W) is the alternation of RP(A) and RP(B). 
(4) If TF is a restricted quantifier Qx followed by its scope Z and 

RP(Z) is the reduction of Z over D8
P, then let ]T)X Rp(Z) be the alter­

nation (taken in some fixed order) of all those distinct expressions ob­
tainable by replacing all occurrences of x in RP(Z) (including its oc­
currences as an argument term) by occurrences of a member of Dp. 
Construct H* Rp(%) similarly using conjunction instead of alterna­
tion. Then Rp(W) is ]>> RP(Z) if Qx is an existential quantifier and 
is I I* Rv(Z) if Qx is a universal quantifier. 
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Finally, if S is an arbitrary schema, let S' be a rectified schema 
equivalent to S (and effectively obtained from 5), and define RP(S), 
the reduction of S over Dpl or briefly the pth reduction of 5, to be 

For an instructive example of the above notions, let 5 be 

1 [\fxGx V T \fyNy] V \fyiGyi V 1 X/xiNxi 

and let T be 

1 \fx[Gx V T vy#y] V \fyiGyi V l VxxNxx. 

Then 5 has property C of order 2, but T has property C of no order 
earlier than 3. For £>£ is the set {l, y, y\\ and R2(S) is the truth-
functionally valid expression 

1 [(Gl & G^ & Ĝ x) V"I tfy] V Gyi V T (ATI & Ny & tfyO. 

However, since JDj is the set {l, y[l], yi}, R2{T) is the truth-func-
tionally nonvalid expression 

1 [(Gl V TNy[l]) & (Gy[l] V Ttfy[y[l]]) & (Gyi V T Ny[yi])] 

V Gyi V 1 (M & tfy[l] & tfyi). 

.BwJ tóew tóe schemata S and T refute (I). For T comes from 5 by one 
application of the third rule of passage. 

Now say that an effectively computable function x is a strong 
analyzing function for a given rule of passage if, for any £ = 1,2,3, • • -, 
whenever an arbitrary schema S has property C of order p then any 
schema T coming from S by one application of the rule of passage 
has property C of order x(p)> Herbrand's assertion (I) is that the 
identity function is a strong analyzing function for each rule of pas­
sage. But we have just seen that this is false. Indeed, as the following 
complex example shows, there is no strong analyzing function for 
either the third or fourth rule of passage. 

For each p = 1, 2, • • • , let Ap be the schema 

}/y2\ryz - • • XfrVf-if1 Gy2yz V 1 Gy%y^ V • • • V ^Gy^iyp 

V "T Mytyp+i V BxzMypxz] ; 
let Sp be the schema 

Ap V 3#i 3x2l ["I Gxix2 V y/zl Mxix V ByiMx2yi] ; 

and let Tp be the schema 

Ap V 3#i 3x2T [l'Gxix2 V Xfx(l Mxix V ByiMx&i)]. 

Then the schema Sp has property C of order 3, and the schema Tp 

has property C of order p but of no earlier order. 

file:///fxGx
file:///fyNy
file:///fyiGyi
file:///fyiGyi
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Undoubtedly, the reader will have noticed that the present counter­
example to (I) results, as does the earlier one, from a single applica­
tion of the third rule of passage with a negatively occurring nub (i.e., 
with a nub lying within the scope of an odd number of negation signs). 
Now we shall say that an application of a rule of passage is crucial if 
it is an application either of the third or of the fourth rule of passage 
with a negatively occurring nub. We shall say this because only with 
respect to crucial applications does Herbrand err. In all other ap­
plications of the rules of passage (I) holds; that is, for all rules of 
passage except the third and the fourth and for these except when 
applied with negatively occurring nubs the identity function is a 
strong analyzing function. (The heart of Herbrand's error is on pp. 
103-105 of [l] . Given schemata S and T which result from one an­
other by rules of passage, Herbrand attempts to embed the sets DP 

into the sets D% in a special way. However, he fails to verify that his 
embedding is well defined and possesses the properties he requires; 
for crucial applications of rules of passage the verification is not 
possible.) 

From the falsity of (I) with respect to crucial applications follows 
at once the falsity of (II). In the second counterexample to (I) we 
saw that for each >̂== 1, 2, 3, • • • , although Sp has property C of 
order 3, Tp has property C of earliest order p. But now consider the 
schema 7SP\/TP. For each p, it also has property C of order 3. So 
(II) is false. Note, however, that the schemata S and T occurring in 
the first counterexample to (I) do not give a counterexample to (II). 
Hence to obtain a counterexample relatively easy to check, let S and 
T be respectively the schemata 

VyiMyiV Bx{l GxiVT [\fx2Mx2\/ 3 3 ^ 2 ] V T [\fxzTNxz\/T\fyzGyz] 

and 

\tyiMyxV Bx{T GxiVT\fx2[Mx2V By2Ny2] V"T V*s[TNxz\/T\/yzGyz]. 

Here T comes from S by two crucial applications of the rules of pas­
sage, and has property C of earliest order 4. But the schemata S 
and 1 SV T have property C of orders 2 and 3 respectively. 

For tracing the deeper implications of the falsity of (I) it proves 
convenient to extend the notion of a strong analyzing function. So 
let ê be any ^-premised quantificational rule of inference (# = 1, • • •)• 
A strong analyzing f unction f or é is any w-placed effectively computa­
ble function x such that, for any given w-tuple p\\ p2\ • • • ; pn of 
numbers and any given n-tuple Si; S2; • • • ; Sn of arbitrary sche­
mata, if for each i = 1, • • • , n the schema Si has property C of order 

file:///tyiMyxV
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pi, then the number x(Pu * * * » pn) is the order to which any schema 
T will have property C if T comes from Si; 52; • • • ; Sn by a single 
(appropriate) application of 4. 

Thus (II) asserts that for the 2-premised rule of modus ponens 
there is a strong analyzing function, namely, the function max(£, q) 
where the first premise has property C of order p and the second 
premise has property C of order q. But the second counterexample to 
(II) shows that this function cannot be a strong analyzing function 
for modus ponens, and the first counterexample to (II) shows that 
no function can be. 

When we look at Herbrand's argument for (II) we see that it fails 
at only one point: in assuming, by relying on (I), that a schema has 
property C of order p only if a prenex form obtainable from the 
schema by the rules of passage has property C of order p (p. 115 of 
[l])* This false assumption, which we shall label A(I), is made by 
Herbrand at each key point in Chapter 5 of his thesis. From it he 
quickly proves (p. 114 of [l]) that the successor function is a strong 
analyzing function for the rule of existential generalization and that 
the identity function is a strong analyzing function for both the rules 
of universal generalization and generalized simplification. (Herbrand 
considers only simplification, but his discussion extends at once to 
generalized simplification.) But then Herbrand has completed his 
argument for the first and more difficult part of his theorem. Indeed, 
since each quantifier-free tautology has property C of order 1, Her­
brand has shown on the basis of (I) and A(I) that if D(S) is any 
derivation in 3C of an arbitrary schema S and if existential generaliza­
tion has been applied k times in D(S), then the (fe + l)st reduction of 
S is truth-functionally valid; i.e., <j>(D(S)) =Rk+i(S). Moreover, the 
only flaw in Herbrand's argument (p. 113 of [l]) for the second 
part of his theorem is that it also begins with the same false assump­
tion A(I). 

Hence Herbrand's argument can be repaired and his Fundamental 
Theorem established if we can find a weak analysing function for 
crucial applications of rules of passage; that is, if we Can find an 
effectively computable 2-placed function f such that for any given 
schema S and any given number p~l, * • • , if S has property C 
of order p> then the number f (5, p) is the property C order of any 
schema T coming from S by one application of the third or fourth 
rule of passage with a negatively occurring nub. For given such a 
function f we can construct an effectively computable 3-placed func* 
tion 0 such that if S is any schema having property C of order p and 



itfsl FALSE LEMMAS IN HERBRAND 70S 

T is any prenex schema obtained from S solely by the rules of pas­
sage, then T has property C of order d(Sf p% T). And then, using the 
information supplied by 6 wherever Herbrand uses A(I), we get a 
correct proof. In particular, we see that the rules of universal and 
existential generalization as well as the rule of generalized simplifica­
tion have indeed the strong analyzing functions Herbrand claimed 
for them. But of course the rule of modus ponens does not. Rather, 
for it we get what we may again call a weak analyzing function, that 
is, an effectively computable 4-placed function 7 such that for any 
given schemata S and "TSV T and any given numbers p and q if S 
has property C of order p and 7S\/T has property C of order q, then 
the schema T has property C of order 7(5, T, p, q). However, and 
this is what Herbrand really wanted to achieve, we can still construct 
an effectively computable function \f/ such that for any S and any p 
if RP(S) is truth-functionally valid, then \l/(Rp(S)) is a normal form 
derivation of 5 in 3C, that is, a derivation in which no applications of 
either the third or fourth rules of passage or modus ponens ever oc­
cur. So a Herbrand-type proof of Herbrand's Theorem turns 
squarely upon finding a weak analyzing function for crucial applica­
tions of rules of passage. And such a function follows at once from 
(III) below. 

(Ill) Let the schema S have property C of order p; let T be any 
schema coming from S by one application of the third or the fourth 
rule of passage with a negatively occurring nub; and let there be 
r ( ̂  0) restricted quantifiers within whose scopes the nub of the ap­
plication lies. Then 

(a) the schema T has property C of order 2p<~-l when r«=0, 
(b) the schema T has property C of order 

1 + S I I [1 + «i)Y - (n(f - l))r] when r > 0, 
* - i t~i 

where n{i) is the cardinality of Df, and where ]£ and J J are ordinary 
arithmetic summation and multiplication. (The proof of (III), by 
Dreben, appears in his introduction to [3].) 

Note that in the first counterexample to (I) the number r is 0 
and in the second it is 2. Note further that only when r>0 do crucial 
applications lack strong analyzing functions. 

We are grateful to Alonzo Church, W. V. Quine, Hao Wang, John 
Denton, Robert Fenichel, and David Ragozin for helpful comments. 
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Let L1, L2 denote respectively the spaces of summable and square 
summable functions on the circle group and Hl, H2 their subspaces 
consisting of those functions whose Fourier coefficients vanish for 
negative indices. A closed subspace M of L1 or L2 is "invariant" if 

xMCM 

and "simply invariant" if the above inclusion is strict, where x 'IS 

the character 
x(«) - e<*. 

The structure of simply invariant subspaces is known, namely, they 
are precisely the subspaces of the form qH1 or qH2 (respectively) 
where q is a measurable function of modulus 1 a.e. Beurling [l] first 
proved this for subspaces MC.H2; for MC.H1, this is due to de Leeuw-
Rudin [5]; for MQL2, due to Helson-Lowdenslager [3] and for 
MCL1 , due to Forelli [2]. In [3] Helson-Lowdenslager also gave a 
simple proof of the H2 case, free of function theoretic considerations. 
Using their arguments Hoffman [4] extended this result to simply 
invariant subspaces of HP(dm) defined over logmodular algebras. 
In this paper we prove this result for simply invariant subspaces of 
L2(dm) and L\dm) over logmodular algebras; the results of the previ­
ous authors follow as a corollary. The proofs of the previous authors 

1 This work was done while I held a visiting appointment at the University of 
California, Berkeley. 
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