
COHOMOLOGY OF HOMOGENEOUS SPACES12 

BY PAUL F. BAUM 

Communicated by Deane Montgomery, February 18, 1963 

Various authors have studied the following problem: "Let K be a 
field or the integers. If G is a compact connected Lie group and U 
is a closed connected subgroup how can the cohomology of the homo­
geneous space G/U, H*(G/U; K)y be computed from H*(G; K), 
H*(U; K) and some algebraic topological invariant of the way U is 
imbedded in G?" 

The most comprehensive results to date on this question have been 
obtained by H. Cartan [3] and A. Borel [ l ] . H. Cartan [3] solved 
the problem for the special case when the coefficient ring is the real 
numbers. A. Borel [ l ] essentially solved the problem for the special 
case when U is a subgroup of maximal rank and both H*(G; K) and 
H*(U; K) are exterior algebras on generators of odd degree. Indeed, 
Borel's work in [ l ] , together with a result of R. Bott [2], gives a 
complete solution for this case. 

For the invariant of the imbedding of U in G both Cartan and 
Borel take the cohomology map p*: H*(BG\ K)—*H*(BU\ K) induced 
by the map p : Bjj—*B Q of classifying spaces arising from the inclusion 
UCG. If H*(G; K) and H*(U; K) are both exterior algebras on 
generators of odd degree the results of [ l ] give a method for com­
puting p* from group-theoretic information on how U is imbedded 
in G. 

Using unpublished results of S. Eilenberg and J. C. Moore the 
following generalization of the Cartan-Borel results is obtained : 

THEOREM. Let K be a field or the integers. Assume that H*(G; K) 
and H*(U; K) are exterior algebras on generators of odd degree. Con­
sider H*(Bu\ K) to be an H*(BG] K) module by means of the map 
p*:H*(B0; K)->H*(Bu; K). Then the algebra structures in H*(B0; K) 
and H*(Bu', K) induce an algebra structure in 

TorH*(Bo;K)(K, H*(Bu; K)) 

such that for a suitable filtration of the algebra H*(G/U; K) 

Tor H*(B0IK) (K, H*(Bu; K)) = E0H*(G/U; K). 

1 Research supported by N.S.F. graduate fellowship. 
2 The work announced here is contained in the author's doctoral thesis, submitted 

to Princeton University. The author thanks his advisers J. C. Moore and N. E. Steen-
rod for the guidance and encouragement they gave him. 
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REMARKS. 1. The proof is independent of the Cartan-Borel results 
and new proofs of their results are obtained. 

2. If the coefficient ring is the integers Z then 

TorH*(BG;Z)(Z, H*(Bu; Z)) 

and H*(G/U; Z) are isomorphic as abelian groups. 
3. If the coefficient ring is a field then the algebra structure of 

TorH*(BQ;K)(Ky H*(Bu] K)) can be closely analyzed and sufficient 
conditions for TOVH\BQ,K){K, H*(BU) K)) and H*(G/U; K) to be 
isomorphic as algebras can be derived. 

4. The hypotheses of the theorem are very frequently satisfied. If 
G is a Lie group with no ^-torsion then H*(G\ K) is an exterior 
algebra on generators of odd degree whenever K is a field of character­
istic p. For example, H*(U(n) ; K), H*(SU(n) ; K) and jff*(Sp(») ; K) 
are exterior algebras on generators of odd degree for any coefficient 
ring K. H*(SO(n); K) and i3"*(Spin(^); K) are exterior algebras on 
generators of odd degree whenever K is a field whose characteristic 
is not 2. There are many examples where G and U are free of ^-torsion 
but G/U has ^-torsion. 

5. A corollary of the theorem is: 

COROLLARY. Let a denote the characteristic map of the principal U 
bundle U—>G-+G/ U. Consider the sequence 

p* a* 
n*(BG; K) Î-» H*(Bu; K)->H*(G/U; K). 

Whenever the hypotheses of the above theorem are satisfied the kernel of 
a* is the ideal of H*(Bu\ K) generated by the elements of positive degree 
in Image p*. 

OUTLINE OF PROOF. Let F-^lE-^TB be a fibration in the sense of 
Serre. Assume that F, E, and B are connected and that B is simply 
connected. Assume also that for each integer g, Hq(E ; K) and Hq(B ; K) 
are finitely generated K-modules. Consider H*(E; K) to be an 
H*(B; K) module by means of the map TT*:H*(B; K)->H*(E; K). 
In this situation S. Eilenberg and J. C. Moore have constructed (un­
published) a spectral sequence converging to H*(F; K) whose E% 
term is Tor#*(j3;.K:)(i£, H*(E\ K)). The method of proof is to apply 
this Eilenberg-Moore spectral sequence to the fibration 

G/U^BU-^BQ 

and show that whenever the hypotheses of the theorem are satisfied 
this spectral sequence has E2 = Ewt 
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The case where the coefficient ring is the integers follows from the 
field case by a universal coefficient argument. Thus it suffices to con­
sider the case when the coefficient ring K is a field, so from now on K 
is a field. 

The special case when U is a subgroup of maximal rank is proved 
by applying some algebraic results on E-sequences [4]. Using the 
maximal rank result it is then shown that it suffices to prove the theo­
rem for the case when the subgroup is a torus. 

The torus case is proved by induction on the dimension of the torus. 
If the torus is a zero dimensional torus, i.e. if the torus is just the 
identity element of the group G, then the fibration to be studied is 
just G—*EQ—*BG, the universal G-fibration. An explicit calculation 
shows that TorH*(B0;K)(K, K) and H*(G; K) are isomorphic as alge­
bras. 

Now let TVi and T% be respectively an / — 1 and an I dimensional 
torus of G with TVi C 2Y A commutative diagram 

BTIITI-I"-* BTl/Ti-i-> " 

î î Î 
G/Tx -^BTl—?—>B0 

î î î 
<r p 

G/Ti-i —> BTI-I > Bo 

is constructed in which each row and each column is a fibration. It is 
shown that if the Eilenberg-Moore spectral sequence of the bottom 
row has E2 = £«», then so does the Eilenberg-Moore spectral sequence 
of the middle row. This completes the inductive step. 

Full details will be published elsewhere. 
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