TWO THEOREMS CONCERNING FUNCTIONS HOLOMORPHIC ON MULTIPLY CONNECTED DOMAINS

BY E. L. STOUT¹

Communicated by Walter Rudin, March 25, 1963

1. Let Ω be a finitely connected plane domain whose boundary, $\partial\Omega$, consists of the circles Γ_0 , Γ_1 , \cdots , Γ_n . We assume Γ_j lies in the interior of Γ_0 for $j=1,\ 2,\ \cdots$, n. Let Δ_0 be the interior of Γ_0 and let Δ_j be the exterior of Γ_j , $j=1,\ 2,\ \cdots$, n. We then have $\Omega=\bigcap_{j=0}^n \Delta_j$. Let $H_\infty[\Omega]$ be the collection of all bounded holomorphic functions in Ω . We shall say that a set S of points of Ω is an interpolation set for Ω if given a bounded complex valued function w on S there is $f \in H_\infty[\Omega]$ such that f(z)=w(z) for all $z\in S$. If $\{z_n\}_{n=1}^\infty$ is a sequence in Ω , without limit points in Ω , we write $\{z_n\}=S_0\cup S_1\cup\cdots\cup S_n$ where the S_j are pairwise disjoint and where the only limit points of S_j lie in Γ_j , $j=0,\ 1,\ \cdots,\ n$.

In the present note we sketch proofs for the following two theorems:

THEOREM A. The sequence $\{z_n\}$ is an interpolation set for Ω if and only if each S_j is an interpolation set for the disc Δ_j .

THEOREM B. Let f_1, f_2, \dots, f_m be functions in $H_{\infty}[\Omega]$ such that $|f_1(z)| + |f_2(z)| + \dots + |f_m(z)| \ge \delta > 0$ for all $z \in \Omega$. Then there exist functions $g_1, g_2, \dots, g_m \in H_{\infty}[\Omega]$ such that $f_1g_1 + f_2g_2 + \dots + f_mg_m = 1$.

L. Carleson [2] has established Theorem B in case Ω is the open unit disc. He has also proved [1] that the sequence $\{z_n\}_{n=1}^{\infty}$ is an interpolation sequence for the open unit disc if and only if there is a $\delta > 0$ such that

$$\prod_{n\neq k} \left| \frac{z_n - z_k}{1 - \bar{z}_n z_k} \right| > \delta$$

for $k = 1, 2, 3, \cdots$. For a discussion and alternative proof see [3, pp. 194–208].

2. Outline of the proof of Theorem A. Let B_j be the Blaschke product associated with the disc Δ_j and the set of points S_j , $j=0, \dots, n$. Note that there is an $\eta>0$ such that $|B_j(z)|>\eta$ for $z\in S_k$ if $k\neq j$.

¹ National Science Foundation Graduate Fellow.

Suppose now that S_j is an interpolation set for Δ_j , $j=0, \dots, n$. Let w be a bounded function on S, and let $f_j \in H_{\infty}[\Delta_j]$ be such that

$$f_{j}(z) = w(z)/(B_{0}(z) \cdot \cdot \cdot B_{j-1}(z)B_{j+1}(z) \cdot \cdot \cdot B_{n}(z))$$

for all $z \in S_i$. Define

$$F = f_0 B_1 B_2 \cdots B_n + f_1 B_0 B_2 \cdots B_n + \cdots + f_n B_0 B_1 \cdots B_{n-1}.$$

Then $F \in H_{\infty}[\Omega]$ and F(z) = w(z) for all $z \in S$.

Conversely, assume that $\{z_n\}_{n=1}^{\infty}$ is an interpolation set for Ω . If $f \in H_{\infty}[\Omega]$ we define ||f|| by

(1)
$$||f|| = \sup\{ |f(z)| : z \in \Omega \}.$$

A Banach space argument like that in [3, p. 196] shows that there is a constant M such that if w is a function on $\{z_n\}_{n=1}^{\infty}$ with $|w(z)| \le 1$ for all $z \in \{z_n\}_{n=1}^{\infty}$, then there is $f \in H_{\infty}[\Omega]$ with $||f|| \le M$ and f(z) = w(z), $z \in \{z_n\}_{n=1}^{\infty}$. Given $z_k \in S_j$, let $B_j^{(k)}$ be the Blaschke product associated with the disc Δ_j and the set $S_j \setminus \{z_k\}$. Let $f \in H_{\infty}[\Omega]$ be such that $f(z_n) = 0$ for $n \ne k$, $f(z_k) = 1$ and such that $||f|| \le M$. The function

$$g = f/(B_0 \cdot \cdot \cdot B_{j-1}B_j^{(k)}B_{j+1} \cdot \cdot \cdot B_n)$$

is in $H_{\infty}[\Omega]$. Since there is $\delta > 0$ such that $|B_i(z)| \ge \delta$ for all $z \in \Gamma_j$, $i \ne j$, we have that $||g|| \le M/\delta^n$. In particular then $|g(z_k)| \le M/\delta^n$. This yields

$$| \delta^{n} M^{-1} f(z_{k}) / (B_{0}(z_{k}) \cdot \cdot \cdot B_{j-1}(z_{k}) B_{j+1}(z_{k}) \cdot \cdot \cdot B_{n}(z_{k})) | \leq | B_{j}^{(k)}(z_{k}) |.$$

Since $f(z_k) = 1$, and the product $B_0 \cdot \cdot \cdot B_{j-1}B_{j+1} \cdot \cdot \cdot B_n$ is uniformly bounded away from zero on S_j , we have that $B_j^{(k)}(z_k) \ge \delta_1 > 0$. This estimate is uniform in k, so S_j is an interpolation set for Δ_j .

3. Outline of the proof of Theorem B. Observe that $H_{\infty}[\Omega]$ is a commutative Banach algebra with identity if it is given the norm defined by (1). Let $\mathfrak{M}[\Omega]$ be the maximal ideal space of $H_{\infty}[\Omega]$; we regard $\mathfrak{M}[\Omega]$ as the collection of all nonzero complex homomorphisms of $H_{\infty}[\Omega]$ with the weak* topology. Let $\mathfrak{M}_{\varepsilon}[\Omega]$ be the collection of those homomorphisms ϕ_{λ} of the form $\phi_{\lambda}(f) = f(\lambda)$, $\lambda \in \Omega$. It is known [3, p. 163] that to establish our result it suffices to prove $\mathfrak{M}_{\varepsilon}[\Omega]$ dense in $\mathfrak{M}[\Omega]$.

For $j=1, 2, \dots, n$, let $H^0_{\infty}[\Delta_j]$ be the closed subalgebra of $H_{\infty}[\Omega]$ consisting of those f which are restrictions to Ω of functions in $H_{\infty}[\Delta_j]$ which vanish at infinity. It is known [4, p. 56] that if $f \in H_{\infty}[\Omega]$, then f can be written in the form

$$(2) f = f_0 + f_1 + \cdots + f_n,$$

 $f_0 \in H_{\infty}[\Delta_0], f_j \in H_{\infty}^0[\Delta_j], 1 \leq j$. It is immediate that this decomposition is unique; it yields

$$(3) H_{\infty}[\Omega] = H_{\infty}[\Delta_0] \oplus H_{\infty}^0[\Delta_1] \oplus \cdots \oplus H_{\infty}^0[\Delta_n],$$

the direct sum being understood in the sense of Banach spaces.

Following some ideas of I. J. Schark (see [3, p. 159, ff.]), we note that the function z is in $H_{\infty}[\Omega]$. It gives rise to the function z on $\mathfrak{M}[\Omega]$ given by $z(\phi) = \phi(z)$. We can prove that z maps $\mathfrak{M}[\Omega]$ onto $\overline{\Omega}$ and that z is one-to-one over Ω . If $\alpha \in \partial \Omega$, set $\mathfrak{M}_{\alpha} = \{\phi \in \mathfrak{M}[\Omega]: z(\phi) = \alpha\}$. A slight modification of the argument for the disc case shows that if $f \in H_{\infty}[\Omega]$, then z is constant on \mathfrak{M}_{α} if and only if z is continuously extensible to $z \in \mathbb{M}[\Omega]$ and that if z is so extensible, then z is a constant on z for all z for all z for all z.

Suppose now that ϕ is a multiplicative linear functional defined on $H_{\infty}[\Delta_0]$ viewed as a subalgebra of $H_{\infty}[\Omega]$ by the direct sum decomposition (3). Let $\phi(z) \in \Omega$. Then ϕ admits a unique extension to an element of $\mathfrak{M}[\Omega]$. This is clear since \mathfrak{L} maps $\mathfrak{M}[\Omega]$ onto $\bar{\Omega}$ and is oneto-one over Ω . If $\alpha = \phi(z)$ lies in Γ_0 , ϕ also admits a unique extension to an element of $\mathfrak{M}[\Omega]$. For uniqueness, suppose that ϕ^* is an extension of ϕ to all of $H_{\infty}[\Omega]$. For $f \in H_{\infty}[\Omega]$, write $f = f_0 + f_1 + \cdots + f_n$ in accordance with (2). The linearity of ϕ^* implies that $\phi^*(f) = \phi^*(f_0)$ $+\phi^*(f_1)+\cdots+\phi^*(f_n)$. Since ϕ^* is an extension of ϕ , and since, for $j = 1, 2, \dots, n, f_j$ is continuously extensible to $\Omega \cup \{\alpha\}$, it follows that $\phi^*(f) = \phi(f_0) + f_1(\alpha) + \cdots + f_n(\alpha)$. This establishes the uniqueness of the extension. This choice of ϕ^* yields a multiplicative functional. To see this, suppose $g \in H_{\infty}[\Omega]$ and write $g = g_0 + g_1 + \cdots + g_n$ by (2). Then $fg = \sum_{j,k=0}^{n} f_j g_k$. Since ϕ^* is plainly linear, we need only show $\phi^*(f_jg_k) = \phi^*(f_j)\phi^*(g_k)$. If neither j nor k is zero, f_jg_k is continuously extensible to $\Omega \cup \{\alpha\}$, so we need only consider terms of the form $f_{0}g_{k}$ and $f_{j}g_{0}$. Suppose then that $f \in H_{\infty}[\Delta_{0}], g \in H_{\infty}[\Delta_{j}], j \neq 0$. Since $\phi^*(g) = g(\alpha)$, we are finished if we can show $\phi^*(fg - g(\alpha)f) = 0$. Write

$$fg - g(\alpha)f = h_0 + h_1 + \cdots + h_n$$

in accordance with (2). Then h_j is continuous at α for $j=1, \dots, n$, and since $fg-g(\alpha)f$ is continuous at α , it follows that h_0 must be continuous at α so that $\phi(h_0)=h_0(\alpha)$. Therefore $\phi^*(fg-g(\alpha)f)=h_0(\alpha)+h_1(\alpha)+\dots+h_n(\alpha)=0$. We conclude that ϕ^* is multiplicative.

If ϕ is a multiplicative linear functional on $H_{\infty}[\Delta_0]$ such that $\phi(z) \in \Gamma_i$ for $j \neq 0$, our argument indicates that ϕ admits many exten-

sions to an element of $\mathfrak{M}[\Omega]$. If $\phi(z) \in \Delta_0 \setminus \overline{\Omega}$, then ϕ admits no extension.

The same argument applies to $\Delta_1, \dots, \Delta_n$ in place of Δ_0 . This also shows that every element of $\mathfrak{M}[\Omega]$ is determined by its action on the subalgebras $H_{\infty}[\Delta_0]$, $H_{\infty}^0[\Delta_1]$, \dots , $H_{\infty}^0[\Delta_n]$. It now follows that $\mathfrak{M}_{\epsilon}[\Omega]$ is dense in $\mathfrak{M}[\Omega]$. For suppose $\phi \in \mathfrak{M}[\Omega]$, and suppose $\alpha = \phi(z) \in \Gamma_k$. Let $\phi^{(j)}$ be the restriction of ϕ to the subalgebra $H_{\infty}[\Delta_j]$. By Carleson's result for the disc, there is a point $\lambda \in \Delta_k$ such that the point evaluation $\phi_{\lambda}^{(k)}$ at λ is near $\phi^{(k)}$ in the sense of the weak* topology in the maximal ideal space of $H_{\infty}[\Delta_k]$. If λ is near α , then $\lambda \in \Omega$, and each of the point evaluations at $\lambda, \phi_{\lambda}^{(j)}$, for $j \neq k$ is near the point evaluation $\phi_{\alpha}^{(j)}$ in the maximal ideal space of $H_{\infty}[\Delta_j]$. But then the point evaluation $\phi_{\lambda} \in \mathfrak{M}_{\epsilon}[\Omega]$ is near the homomorphism ϕ in $\mathfrak{M}[\Omega]$. Thus $\mathfrak{M}_{\epsilon}[\Omega]$ is dense in $\mathfrak{M}[\Omega]$, and we have our result.

4. We can relax our condition on the boundary of Ω as follows. Our results are plainly invariant under conformal mapping. It is known [5, p. 377] that every finitely connected domain with no nondegenerate boundary components is conformally equivalent to a domain bounded by circles. Thus our results apply to this more general class of domains.

REFERENCES

- 1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
- 2. ——, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559.
- 3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 4. W. Rudin, Analytic functions of class H_p , Trans. Amer. Math. Soc. 78 (1955), 46-66.
 - 5. A. Hurwitz and R. Courant, Funktionentheorie, Springer, Berlin, 1922.

University of Wisconsin