## ON A CONJECTURE CONCERNING PLANAR COVERINGS OF SURFACES

## BY BERNARD MASKIT1

Communicated by Lipman Bers, January 29, 1963

C. D. Papakyriakopoulos [1] recently proposed two conjectures in conjunction with his work on the Poincaré conjecture. We present here three counter examples to the second of these. He has subsequently modified his conjectures [2] as suggested by these examples. The conjecture to be contradicted is the following.

Let S be a closed orientable surface of genus  $g \ge 2$ . Let  $A_1, B_1, \cdots, A_q$ ,  $B_q$  be a fundamental system of S based at o [1, p. 360]. Let  $a_1, b_1, \cdots, a_q$ ,  $b_q$  be the elements of  $\pi_1(S, o)$  corresponding to  $A_1, B_1, \cdots, A_q$ ,  $B_q$  respectively; then

$$\pi_1(S, o) \simeq F = \left(a_1, b_1, \cdots, a_g, b_g: \prod_{i=1}^g [a_i, b_i].\right)$$

Let  $\phi$  be the free group freely generated by  $a_1, b_1, \dots, a_0, b_0$ . Let  $\tau_j$  be a word in the a's and b's representing an element of  $[\phi, \phi]$ ,  $j=1, \dots, g$ . Then for some subset  $(m, \dots, n)$  of  $(1, \dots, g)$  the regular covering surface  $\tilde{S}$  of S, corresponding to  $\langle [a_m, b_m \tau_m], \dots, [a_n, b_n \tau_n] \rangle$  in F [1, p. 361, footnote 5], is planar.

The three examples are differentiated by the following properties. A. The elements  $b_j\tau_j$  in F,  $j=1, \cdots$ , g, can be represented by simple loops on S [1, p. 365].

B. The words  $b_i \tau_i$  in the a's and b's are cyclically reduced.

In all three examples we take S of genus 2, with the basis  $A_1$ ,  $B_1$ ,  $A_2$ ,  $B_2$  as shown in Figure 1. For the first example we take  $\tau_1 = [b_1^{-1}, b_2]$ ,  $\tau_2 = [b_2^{-1}, b_1]$ ; this satisfies A but not B. In the second example  $\tau_1 = [b_2^{-1}, a_1^{-1}]$ ,  $\tau_2 = [b_1^{-1}, a_2^{-1}]$ ; this satisfies B but not A. In the third example  $\tau_1 = [b_2, a_2]$ ,  $\tau_2 = [b_1, a_1]$ ; this satisfies both A and B.

We present here a proof only for the third counter example. The proofs for the first two are essentially the same except that, for these, one does not need the explicit construction of a certain group, and in the second example there are 19 cases to consider, while there are 7 cases in both the first and third.

We now assume that  $\tilde{S}_1$ , the regular covering surface of S corresponding to  $\langle [a_1, b_1\tau_1] \rangle$   $(\tau_1 = [b_2, a_2])$ , is planar. Let  $C_1$  be a loop on

<sup>&</sup>lt;sup>1</sup> This research was supported by the Office of Naval Research under Contract No. NONR-285(46) and by the National Science Foundation. The author is currently a National Science Foundation Graduate Fellow.



FIGURE 1

S representing  $[a_1, b_1\tau_1]$  as shown in Figure 2, and let  $C_2$  be a directed curve "parallel" to  $C_1$ . Let o be the point of intersection of  $C_1$  and  $C_2$  marked in Figure 2. We now lift  $C_1$  and  $C_2$  to  $\tilde{C}_1$  and  $\tilde{C}_2$  respectively, starting at a point  $\tilde{o}$  over o. Since  $\tilde{S}_1$  is planar,  $\tilde{C}_1$  and  $\tilde{C}_2$  must have a second point of intersection  $\tilde{P}$  which projects to a point of intersection P, of  $C_1$  and  $C_2$ . If we orient S and lift the orientation to  $\tilde{S}_1$ , then we can choose  $\tilde{P}$  so that the sense of intersection at  $\tilde{P}$  is the reverse of that at  $\tilde{o}$ , and by projection, the senses of intersection at P and P and P are reversed. Therefore P must be one of the points marked P and P in Figure 2. Furthermore, if we follow P from P to P to P then the element of P corresponding to this loop lies in the defining subgroup for  $\tilde{S}_1$ .

We now have seven cases to consider. If, for example, P is the point marked 1, then the element of F obtained by the above construction is  $b_1^{-1}a_1b_1$ . But  $b_1^{-1}a_1b_1$  cannot be in  $\langle [a_1, b_1\tau_1] \rangle$ , since the element of  $\phi$  corresponding to the word  $b_1^{-1}a_1b_1$  does not belong to  $[\phi, \phi]$ . The same reasoning shows that P cannot be any of the points marked  $2, \dots, 6$ . Hence P must be the point marked 7. Therefore the above construction gives us that  $\tau_1 \in \langle [a_1, b_1\tau_1] \rangle$ , i.e.  $\tau_1$  belongs to the smallest normal subgroup of F containing  $[a_1, b_1\tau_1]$ .

Nothing in the above is changed if we replace  $\tilde{S}_1$  by  $\tilde{S}_2$ , the regular covering surface corresponding to  $\langle [a_1, b_1\tau_1], [a_2, b_2\tau_2] \rangle$ . Also if we look at Figure 2 upside down, the above construction shows that if  $\tilde{S}_3$ , corresponding to  $\langle [a_2, b_2\tau_2] \rangle$ , is planar, then  $\tau_2 = \tau_1^{-1}$  is in  $\langle [a_2, b_2\tau_2] \rangle$ .

The relation,  $\tau_1 \in \langle [a_1, b_1\tau_1] \rangle$ , implies that  $\tau_1$  must be the identity in the group

$$G = (a_1, b_1, a_2, b_2; [a_1, b_1][a_2, b_2], [a_1, b_1\tau_1], [a_2, b_2\tau_2])$$

where  $\tau_1 = [b_2, a_2]$  and  $\tau_2 = [b_1, a_1]$ . Let us now consider a group  $\Gamma$  of  $2 \times 2$  matrices on generators

$$\alpha_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \beta_1 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$$

and the map  $G \rightarrow \Gamma$  defined by

$$a_1 \rightarrow \alpha_1, \quad b_1 \rightarrow \beta_1, \quad a_2 \rightarrow \alpha_2, \quad b_2 \rightarrow \beta_2.$$

This is a homomorphism, since

$$[\alpha_1, \beta_1][\alpha_2, \beta_2] = 1,$$
  $\alpha_1 = \beta_1[\beta_2, \alpha_2],$   $\alpha_2 = \beta_2[\beta_1, \alpha_1]$ 

as one can easily see. However,  $\tau_1 \rightarrow [\beta_2, \alpha_2] \neq 1$ . We have arrived at a contradiction.



FIGURE 2

The assumption that  $\tilde{S}_1$  is planar leads to a contradiction. Hence  $\tilde{S}_1$  is not planar.

The author wishes to thank Professor L. Bers and Dr. Papakyria-kopoulos for many informative conversations.

## REFERENCES

- 1. C. D. Papakyriakopoulos, A reduction of the Poincare conjecture to other conjectures, Bull. Amer. Math. Soc. 68 (1962), 360-366.
- 2. ——, A reduction of the Poincaré conjecture to other conjectures. II, Bull. Amer. Math. Soc. 69 (1963), 399-401.

NEW YORK UNIVERSITY