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Introduction. In [ l ] J. Stallings proves that members of the class 
of closed irreducible 3-manifolds which are fibered over a circle by 
an aspherical 2-manifold may be distinguished from other closed ir­
reducible 3-manifolds by their fundamental group alone. 

He asks whether two members of this class of 3-manifolds are 
homeomorphic if they have isomorphic fundamental groups. This 
question is answered in the affirmative here, thus giving a classifica­
tion of these manifolds according to their fundamental group. 

The closed case. Let us denote by 3D? the class of all 3-manifolds 
satisfying the following conditions: 

(a) Manifolds of 9JÎ are irreducible (every 2-sphere bounds a 3-
cell). 

(b) Manifolds of SD? are closed. 
(c) Manifolds of SDÎ have fundamental groups which contain a 

finitely generated normal subgroup of order > 2 , with quotient group 
an infinite cyclic group. 

THEOREM 1. Let Mi be any closed irreducible 3-tnanifold. Let M\ be­
long to 9TC, then Mi is homeomorphic to M% if and only if TTI(MI) is 
isomorphic to 7Ti(M2). 

PROOF. One direction is trivial. By Stallings theorem [l ] Mi admits 
a fibering over 5 \ with fiber a closed 2-manifold TV Let 

(1) 1 -» Ex -> Gx -> Z -» 0 

denote the sequence of fundamental groups of Tu Mu S1, respectively 
corresponding to this fibering. Let p* denote the assumed isomor­
phism from Ti(Mi) = G\ to TTI(MI) — GI. Then p* induces 

(2) l - > £ r 2 - > G 2 - > Z - > 0 . 

Now, G\ and Gi are both described by giving the automorphisms 
<t>*i <t>t °f H\, H2, which are induced by a generator of Z, pulled back 
to Gu G2, and then acting on Hi, H2 by conjugation. 

Since p* is an isomorphism we may assume 

(3) P*<t>i* = <t>?(p*\Hi). 
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According to Stallings theorem [ l ] there is a fibering of M2 which 
induces (2). Denote by JT2 the fiber of this map. Cut Mi, M2, along 
a fiber, obtaining TXXI, T2XI. Denote by 0*: TiX0->TiXl the 
maps which repair these cuts. Clearly <£* induces <£f modulo an inner 
automorphism of Hi. 

Now if a homeomorphism p: TiXl—^TzXl can be found satisfying 

(4) tf>2(p| r i X O ) = p*i, 

then p defines a homeomorphism from Mi to M2. 
An algebraic map p* from 7ri(Ti) to 7Ti(r2) is already defined, so 

according to a theorem of Nielson [2], and Mangier [4], there exists 
a homeomorphism pr.Ti—> T2 such that p*~ p*. Now1 (pi<£i)* 
= (<̂ >2(pi| TiXO))*. According to a theorem of Baer [3] (for orientable 
surfaces) and Mangier [4] (for orientable and nonorientable sur­
faces), the maps pi</>i and <£2(pi| X\X0) differ by an isotopy of !T2.'Let 
us call this isotopy ht. Then h0 o pi o <j>\ — pi o <j>i, hi o pi o <t>i 
= 02(pi| TiXO). Define p: TiXl-*T2Xl as follows: 

p(x, t) = (htpiy t) 
then 

p(x, 1) == (Aipi, 1) 

p(*, 0) = (*0pi, 0) = (Pl, 0). 

So that 
P0i = hipi4>i = (/>2(pi I Ti X 0) 

but 

<t>2(p I Ti X 0) = 4>2(/*0pi I Ti X 0) 

- *2(PI I Ti X 0) 

and so (4) is satisfied and the theorem is proved. 

The compact case. As far as the compact nonclosed case is con­
cerned a somewhat different approach may be adopted. 

Suppose Mi is a compact, orientable, irreducible, 3-manifold, and 
7Ti(Mi) = Gi contains a normal subgroup H% such tha t : 

(a) Hi is finitely generated. 
(b) Gi/Hi~Z. 
(c) HxfrZ2? 
Having already investigated the case <9Mi=$, we may assume 

Ô M I T » ^ . According to Stallings theorem [ l ] Mi is fibered over S1 

with fiber a 2-manifold Si. Since Mi is orientable this fibering implies 
1 Modulo an inner automorphism. 
2 This constitutes part of the hypothesis of Theorem 2. 
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each boundary component of Mi is a torus. Denote by Ti, • • • , Tn 

these boundary tori. Since each boundary torus has a fibering induced 
in it, we may select curves m^ U in each 7\- such that m* covers S1 once 
under the projection of the fibering, and each U lies in a fiber. I t fol­
lows then that m», U generate Ti of 7\-, but further, it also follows that 
each mu U is not nomotopic to 0 in Mi. Join each Ti to a base point, bf 

in Mi by an arc ca. Then by the above remarks each natural map 
TTi{TiUaiy b)—>Ti(Mif b) is a monomorphism. Consider now the group 
7Ti(ikfi, 6 )=G and subgroups iri{Ti\Jau b)=Ai. If a different set of 
arcs ai be selected, then a set of subgroups Ai results, where each 
Ai is a conjugate of Ai. In view of this, we may investigate the topo­
logical invariant (G, | / l i ] , [A2], • • • , [An]), where G is Ti(Mu b) 
and [Ai] is the conjugacy class containing Ai. Call this invariant the 
peripheral system of Mi. (See [5] for the source of this invariant.) 

THEOREM 2. Suppose a compact 3>-manifold M2 has peripheral system 
(G', [A{], [Ai], • • • , [An ]), then if there exists an isomorphism 
<t>: G—>G', mapping [Ai] onto [Ai], Mi is homeomorphic to M2. 

PROOF. By Stallings theorem [ l ] , M2 is fibered over S1 with fiber 
a 2-manifold 52, where 7Ti(52) =<£(7TI(SI)). NOW define homeomor-
phisms ^ii Ti^Jai-^Ui^J^i (where Ui are the boundary tori of Mi 
and /3» are arcs joining Ui to a base point in M2) such that >£* = <£ 
for each element x in wi(TiKJai). This may be done by virtue of [2] 
and the hypothesis. I t is no loss of generality to assume the a» all 
lie on one fiber, and similarly the &. Nielson's [2] may be slightly 
generalized (as in [ô]) so that a homeomorphism ^n+i may be con­
structed from the fiber containing the at- to the fiber containing the 
j8i, satisfying S£*+1=$ for elements x in Hi, and agreeing with the ^i 
on (TiUai)r\(fiber containing ai). Call the homeomorphism now 
defined on dMi<J(a. fiber), ^ . \F may be extended to a small closed 
product neighborhood of dMiU(a fiber). Denote by N this neighbor­
hood, and, by ^ the homeomorphism thereon defined. Now Mi 
— (int N) is a solid torus of some genus (being fibered over an interval), 
and it is easily seen that ^ * maps the kernel of the inclusion 
7Ti(d(Mi — int N)) —> ici(Mi — int N) onto the kernel of 
Ti(d(M2--mt^(N)))-->wi(M2--intV(N)). (The argument is exactly 
that in [6], with Hi taking the place of the commutator subgroup.) 
Hence (as in [6]) SF may be extended to all of Mi and the theorem is 
proved. 
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INSTITUTE FOR DEFENSE ANALYSES 

THE PRODUCT OF A NORMAL SPACE AND A 
METRIC SPACE NEED NOT BE NORMAL 

BY E. MICHAEL1 

Communicated by Deane Montgomery, January 16, 1963 

An old—and still unsolved—problem in general topology is 
whether the cartesian product of a normal space and a closed interval 
must be normal. In fact, until now it was not known whether, more 
generally, the product of a normal space X and a metric space Y 
is always normal. The purpose of this note is to answer the latter 
question negatively, even if Y is separable metric and X is Lindelof 
and hereditarily paracompact. 

Perhaps the simplest counter-example is obtained as follows: Take 
Y to be the irrationals, and let X be the unit interval, retopologized 
to make the irrationals discrete. In other words, the open subsets of 
X are of the form f /U5, where U is an ordinary open set in the 
interval, and 5 is a subset of the irrationals.2 I t is known, and easily 
verified, that any space X obtained from a metric space in this 
fashion is normal (in fact, hereditarily paracompact). Now let Q de­
note the rational points of X, and U the irrational ones. Then in 
XX Y the two disjoint closed sets A = QX Y and B = {(x, x) | xG U) 
cannot be separated by open sets. To see this, suppose that F is a 
neighborhood of B in X X Y. For each n, let 

Un= {xE U\({x} XS1/n(x))CV}, 

1 Supported by an N.S.F. contract. 
2 The usefulness of this space X for constructing counterexamples was first 

called to my attention, in a different context, by H. H. Corson. 


