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Thus any (standard) regenerative event can be represented by a 
Markov process on a continuous state space. It follows, for example, 
that the fact that poo(t) is almost everywhere differentiate is a con­
sequence of the regenerative property of the state 0, but the deeper 
result that poo(t) is everywhere differentiate requires also the dis­
crete nature of the state space. 

It is possible to extend the whole theory to take in properties of 
several states simultaneously, by considering systems of regenerative 
events. In particular, we can examine the transition probabilities 
pij(t) (i^j) of a Markov chain. The theory may also be applied to 
certain Markov processes with continuous state space, and so, via 
the method of supplementary variables, to some non-Markovian 
processes. 

It is hoped to publish elsewhere a detailed account of the theory 
summarised here, and of its various applications. 

I am deeply grateful to Professor D. G. Kendall for much helpful 
discussion, and also to the Department of Scientific and Industrial 
Research for financial support. 
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I present a method whereby a polygonal embedding of a Cayley 
graph in a closed oriented polyhedral surface may be represented as 
the dual of a quotient embedding of a quotient graph and diagrammed 
as a linked network of circuits carrying currents satisfying Kirch-
hoffs node law. By this means, devised to aid construction of tri­
angular embeddings of a complete n node to affirm Heawood's map 
color conjecture [3] in Heffter's dual formulation [4] for those cases 
w = 0, 3, 4, 7 mod 12 where such triangulation is compatible with 
Euler's polyhedral formula, I have been able to solve the cases 
»=3,4 , 7 mod 12, unaware that Ringel [5] had already resolved cases 
WSH3, 7 by a similar though less developed method. Case » s 0 remains 
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undecided. I here outline the method of embedding by quotient net­
work and illustrate it by one example from each of the solved cases. 
Full exposition will be published elsewhere. 

An arc graph g is to consist of a finite set of elements named arcs 
and a finite set of elements named nodes, together with a mapping 
called stem from arcs onto nodes and an involutory permutation of 
arcs called reverse, the reverse of an arc a being denoted by *a. An 
arc is to have as tip the stem of its reverse; a node is to have as hub 
the set of arcs which stem from it and as border the set of tips of 
these hub arcs. 

Recently Edmonds [2] has shown that any polygonal embedding 
of a connected graph in a closed oriented polyhedral surface is com-
binatorially characterized by assigning at each node a cyclic order 
on the arcs stemming therefrom. Hence for an arc graph g such an 
embedding may be regarded as a permutation of arcs, here also called 
rotation, which has the hub sets of g as cycle sets, that is, as minimal 
nonnull fixed sets. 

To any rotation p on g associate another permutation p* of arcs, 
called circulation, defined by p*(a) = £(*a), and call the cycle sets of 
p* the circuits or faces of p. The dual graph g* of g by p has the same 
arcs and reverse as g but its node-hubs are the circuits of p. Thus p* 
is a rotation on g* and p** = p the associate circulation. 

Let 7 be a finite group on n elements x and A a subset of m ele­
ments ô called currents which generates y and is symmetric with re­
spect to inverse. The Cayley graph (cf. [l]) g of 7 by A has as nodes 
the n elements x of 7, and the nm pairs (#, S) as arcs. The arc a = (x, S) 
has x as stem and the arc *#= (xô, 5""1) as reverse, so has tip xô; we 
shall moreover say that it carries the current da = 8 and has the arc 
coa = (o)X, 8) as co translate. 

A rotation p on g, being cyclic on the hub (xy A) of arcs stemming 
from each node x, may equally well be represented by the cyclic 
permutation irx of currents A defined by irx(8)—dp(xi 8) or by the 
cyclic permutation px = xwxx~~1 of the border #A of x. Thus p: (x, 8) 
—»(x, ô') may be rendered as wx: 8—»ô' or as px: x8—±x8'. 

A translation œ in the center of 7 will be called invariant for p if 
poo—up, tha t is, if T^ — TX or poixoo=zoopx for all x. Let £2 be the group 
of all such co, T the quotient group of 7 mod fl, and N the index of 
Q in 7. The quotient graph ® of g mod 0 is the Schreier graph (cf. 
[l ]) of T by A having as nodes the N cosets X of T and the Nm pairs 
(Xy ô) as arcs. 

The rotation p o n g induces a rotation P o n ® such that UX = TX 

for all x in X. Moreover, p on g can be recovered from P o n ® or, 
often more conveniently, from P * on ®* as described below for the 
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regular unfurled case when all cycles of p* and P * have the same 
length I. 

The Cayley graph $of a group y by a set A of m currents can be regu­
larly embedded in a closed oriented polyhedral surface so that all faces 
are l-gons, if there exists a central subgroup Q, of index N in y and an arc 
graph ®* with rotation P* and current flow d on it such that: 

(1) The graph ®* has Nm arcs and Nm/l nodes, with I arcs stemming 
from each node. 

(2) The rotation P* on ®*, cyclic on the I arcs from each nodef induces 
a circulation P** — P on ®* having N circuits each composed of m arcs. 

(3) The currents on each circuit assume all m values of A. 
(4) An arc and its reverse carry inverse currents. 
(5) The currents taken in cyclic order of rotation round each node 

have unit product. 
(6) The N circuits can so be labeled by the N cosets mod 12 that an 

arc on circuit labeled X with reverse on circuit labeled Y has current in 
the co s et X"~lY. 

The current cycle Hx on the circuit labeled X of ®* then determines 
the current rotation irx round the node x of $by putting irx~ILxfor all x 
in the coset X. 

The complete n node may be realized as the Cayley graph on the 
additive group of integers mod n with all m = n — 1 nonzero elements 
as currents. The accompanying Figures 1,2,3 illustrate oriented tri­
angular embedding of such graphs in a surface of genus 
(n — 3)(n — 4)/12 for the values n = 43, 28, 27 exemplifying cases 
w = 7, 4, 3 mod 12 of index i\T=l, 2, 3 respectively. Each figure is 
composed of two diagrams: one showing currents, the other showing 
rotation and circulation. Since currents on reverse arcs must balance, 
the current diagram need only exhibit one of a pair of reverse arcs; 
note that for even n the arc carrying the self-inverse current n/2 
must be self-reverse. The rotation which cyclicly permutes the / = 3 
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FIGURE 1 (n»43, iV«l) 
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arcs stemming from each node is represented by a curved arrow round 
that node ; the associate circuits are labeled by coset representatives 
0, 1, or 2. A few arcs have been broken as indicated to display the 
diagrams as linear bands. 
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